The Little Walnut Water System has prepared the following report to provide information to you, the consumer, on the quality of our drinking water. Included within this report is general health information, water quality test results, how to participate in decisions concerning your drinking water and water system contacts.

Source Water Information

The Little Walnut Water System receives its drinking water from one underground aquifer, located in Bloom Township, adjacent to the treatment facility. The underground supply is delivered to the treatment facility by wells located throughout the wellfield.

Source Water Assessment

The aquifer that supplies drinking water to Fairfield County’s Little Walnut wellfield has a moderate susceptibility to contamination, due to the moderately sensitive nature of the aquifer in which drinking water wells are located and the existing potential contaminant sources identified. This does not mean that the aquifer will become contaminated; only that conditions are such that the ground water could be impacted by potential contaminant sources. Future contamination of the aquifer can be avoided by implementing protective measures. Fairfield County has implemented, and will continue to implement protective measures to prevent contamination of the drinking water sources. Please contact Jason Holman, Chief Water Operator at 614.322.5200 or Ohio EPA at 614.644.2752 for more information.

Health Related Information

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water both tap water and bottled water, include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include: (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife; (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; (D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; (E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.
In order to ensure that tap water is safe to drink, USEPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Little Walnut Water System is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infection. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

About Your Drinking Water

The EPA requires regular sampling to ensure drinking water safety. The Little Walnut Water System conducted sampling for bacteria, fluoride, haloacetic acids, total trihalomethanes as well as lead and copper. The sample collected for nitrate-nitrogen, was below detectable limits in 2018. The Ohio EPA requires us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently.

We have a current unconditioned license to operate our water system.

Listed below is information on those contaminants that were found in the Little Walnut drinking water.

<table>
<thead>
<tr>
<th>INORGANIC CONTAMINANTS</th>
<th>MCLG</th>
<th>MCL</th>
<th>LEVEL FOUND</th>
<th>RANGE OF DETENTION</th>
<th>SAMPLE YEAR</th>
<th>ARE WE IN COMPLIANCE</th>
<th>TYPICAL SOURCE OF CONTAMINANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLUORIDE (mg/l)</td>
<td>4</td>
<td>4</td>
<td>1.08 mg/l</td>
<td>0.95-1.19 mg/l</td>
<td>2018</td>
<td>YES</td>
<td>WATER ADDITIVE WHICH PROMOTES STRONG TEETH</td>
</tr>
<tr>
<td>CHLORINE (mg/L)</td>
<td>4</td>
<td>4</td>
<td>1.20mg/L</td>
<td>0.90-1.30 mg/l</td>
<td>2018</td>
<td>YES</td>
<td>ADDED TO DISINFECT THE WATER</td>
</tr>
<tr>
<td>BARIUM (ug/l)</td>
<td>2000</td>
<td>2000</td>
<td>33.7 ug/l</td>
<td>N/A</td>
<td>2017</td>
<td>YES</td>
<td>EROSION OF NATURAL DEPOSITS</td>
</tr>
<tr>
<td>NITRATE(mg/L)</td>
<td>10</td>
<td>10</td>
<td><0.1mg/L</td>
<td>N/A</td>
<td>2018</td>
<td>YES</td>
<td>RUNOFF FROM FERTILIZER USE; LEACHING OF SEPTIC TANKS, SEWAGE; EROSION OF NATURAL DEPOSITS</td>
</tr>
<tr>
<td>LEAD (ug/l)</td>
<td>0</td>
<td>AL=15</td>
<td><5.0 ug/l</td>
<td><5.0 ug/l</td>
<td>2018</td>
<td>YES</td>
<td>CORROSION OF HOUSEHOLD PLUMBING SYSTEMS</td>
</tr>
</tbody>
</table>

0 out of 10 samples was found to have lead levels in excess of the action level of 15 ug/l)
Copper (mg/l)

<table>
<thead>
<tr>
<th>COPPER (mg/l)</th>
<th>1.3</th>
<th>AL = 1.3</th>
<th>0.695 mg/l</th>
<th>N/A</th>
<th>2018</th>
<th>YES</th>
<th>CORROSION OF HOUSEHOLD PLUMBING SYSTEMS</th>
</tr>
</thead>
</table>

0 out of 10 samples was found to have copper levels in excess of Action Level of 1.3 mg/L.

Copper level in drinking water may be elevated when copper service lines are used in a house or business. Additionally, if your residence has an improper electrical ground, copper levels in the drinking water may increase. For more information on copper in drinking water, please contact the Water Division.

Disinfection By-Products

<table>
<thead>
<tr>
<th>DISINFECTION BY-PRODUCTS</th>
<th>BROMODICHLOROMETHANE (ug/l)</th>
<th>BROMOFORM (ug/l)</th>
<th>CHLOROFORM (ug/l)</th>
<th>DIBROMOCHLOROMETHANE (ug/l)</th>
<th>TOTAL TRIHALOMETHANES (ug/l)</th>
<th>HALOACETIC ACIDS (ug/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

- Bromodichloromethane (ug/l): NA, NA, 2.1 ug/L, 1.9-2.1, 2018, YES, Byproduct of Drinking Water Chlorination
- Bromoform (ug/l): NA, NA, <0.5 ug/L, <0.5, 2018, YES, Byproduct of Drinking Water Chlorination
- Chloroform (ug/l): NA, NA, 2.2 ug/L, 2.0-2.2, 2018, YES, Byproduct of Drinking Water Chlorination
- Dibromoform (ug/l): NA, NA, 1.4 ug/L, 1.2-1.4, 2018, YES, Byproduct of Drinking Water Chlorination
- Total Trihalomethanes (ug/l): NA, 80, 5.7 ug/L, 5.2-5.7, 2018, YES, Byproduct of Drinking Water Chlorination
- Haloacetic Acids (ug/l): NA, 60, <6.0 ug/L, N/A, 2018, YES, Byproduct of Drinking Water Chlorination

Non-Regulated Secondary Standards: Non-Mandatory Water Quality Standards

<table>
<thead>
<tr>
<th>NON-REGULATED SECONDARY STANDARDS: Non-Mandatory Water Quality Standards</th>
<th>IRON (mg/L)</th>
<th>MANGANESE (mg/L)</th>
<th>HARDNESS (mg/L)</th>
<th>PHOSPHATE (mg/L)</th>
<th>SODIUM (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A, N/A</td>
<td>N/A</td>
<td>N/A, 124</td>
<td>N/A, 0.73</td>
<td>N/A, 112</td>
</tr>
</tbody>
</table>

- Iron (mg/L): N/A, N/A, 0.08, N/A, 2018, Iron is not a Health Related Standard but is aesthetically unpleasant from its yellowish to brownish color and stale taste
- Manganese (mg/L): N/A, N/A, 0.03, N/A, 2018, Manganese is not a Health Related Standard but is aesthetically unpleasant due to its ability to cause black stains
- Hardness (mg/L): N/A, N/A, 124, 100-164, 2018, Primarily made up of calcium and magnesium salts. Soft water creates suds easier. Water too soft can be corrosive. The harder the water, the more residual deposits. OEPA recommends hardness in the range of 120-160 mg/l
- Phosphate (mg/L): N/A, N/A, 0.73, 0.51-0.84, 2018, Added to help prevent leaching of copper or lead into the water and sequester any residual iron or manganese
- Sodium (mg/L): N/A, N/A, 112, 87.6-130, 2018, Information for those who may be on a sodium restricted diet

Public participation and comment are encouraged at regular meetings Fairfield County Commissioners, which meets weekly on Tuesdays in the second floor of the Fairfield County Courthouse, 210 East Main Street, Lancaster, Ohio at 10 am.

For more information on the Little Walnut Water System drinking water contact Jason Holman at (614) 322-5200
Definitions of some terms contained within this report

Action Level (AL) – The concentration of a contaminant which, if exceeded, triggers treatments or other requirements which a water system must follow.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant level (MCL): The highest level of contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Parts per Million (ppm) or Milligrams per Liter (mg/L): Units of measure for concentration of a contaminant. A part per million corresponds to one second in a little over 11.5 days.

Parts per Billion (ppb) or Micrograms per Liter (ug/L): Units of measure for concentration of a contaminant. A part per billion corresponds to one second in 31.7 years.

The “<” symbol: A symbol which means less than. A result of <5 means that the lowest level that could be detected was 5 and the contaminant in that sample was not detected.