

Fairfield County Auditor's Office Real Estate Department 108 North High Street Lancaster, Ohio 43229

PROJECT MANUAL CONSTRUCTION DOCUMENTS

Prepared for: Fairfield County Board of Commissioners 210 East Main Street Lancaster, Ohio 43130

DLZ Project No. 1821-7001-50 January 24, 2019

VOLUME 2 0F 2

SPECIFICATIONS TABLE OF CONTENTS - VOLUME 1

DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS

- 00 01 07 ARCHITECT AND ENGINEER'S SIGNATURES SHEET
- 00 01 10 TABLE OF CONTENTS
- 00 11 13 NOTICE TO BIDDERS
- 00 11 13A PREVAILING WAGE RATES
- 00 21 13 INSTRUCTIONS TO BIDDERS
- 00 22 13 SUPPLEMENTARY INSTRUCTIONS TO BIDDERS
- 00 41 13 BID FORM / NON-COLLUSION AFFIDAVIT
- 00 42 20 EQUAL EMPLOYMENY OPPORTUNITY CERTIFICATION
- 00 42 30 AFFIDAVIT FOR NON-DELINQUENCY OF PERSONAL PROPERTY TAXES
- 00 42 40 DRUG FREE WORKPLACE
- 00 43 13 BID BOND- AIA DOCUMENT A310
- 00 43 25 BIDDER'S SUBSTITUTION REQUEST FORM
- 00 52 13 AGREEMENT BETWEEN OWNER AND CONTRACTOR AIA DOC. A101-2017
- 00 61 13 PERFORMANCE AND PAYMENT BOND AIA DOCUMENT A312
- 00 72 13 GENERAL CONDITIONS OF THE CONTRACT AIA DOCUMENT A201

DIVISION 01 – GENERAL REQUIREMENTS

- 01 10 00 SUMMARY OF WORK
- 01 21 16 ALLOWANCES
- 01 25 00 SUBSTITUTION PROCEDURES
- 01 26 00 CONTRACT MODIFICATION PROCEDURES
- 01 26 13 REQUEST FOR INTERPRETATION
- 01 29 00 PAYMENT PROCEDURES
- 01 31 00 PROJECT MANAGEMENT AND COORDINATION
- 01 31 19 PROJECT MEETINGS
- 01 32 33 PHOTOGRAPHIC DOCUMENTATION
- 01 33 00 SUBMITTAL PROCEDURES
- 01 33 00B CADD INFORMATION REQUEST FORM
- 01 40 00 QUALITY CONTROL SERVICES
- 01 41 00 REGULATORY REQUIREMENTS
- 01 42 00 REFERENCES
- 01 45 16 FIELD QAULITY CONTROL PROCEDURES
- 01 45 35 STRUCTURAL INSPECTION AND TESTING
- 01 50 00 TEMPORARY FACILITIES AND CONTROLS
- 01 56 39 TEMPORARY TREE AND PLANT PROTECTION
- 01 60 00 PRODUCT REQUIREMENTS
- 01 65 50 STARTING AND PLACING EQUIPMENT IN OPERATION
- 01 66 00 FIELD TESTS OF EQUIPMENT
- 01 71 50 FINAL CLEANING
- 01 73 29 CUTTING AND PATCHING
- 01 74 00 CLEANING
- 01 75 00 SPARE PARTS AND MAINTENANCE MATERIALS

000110 - 1

01 77 00	CLOSEOUT PROCEDURES
01 78 23	OPERATION AND MAINTENANCE DATA
01 78 36	WARRANTIES
01 78 39	PROJECT RECORD DOCUMENTS

01 82 00 DEMONSTRATION AND TRAINING

DIVISION 02 – EXISTING CONDITIONS

02 41 19 SELECTIVE DEMOLITION

DIVISION 03 – CONCRETE

03 30 00 CAST-IN-PLACE CONCRETE

DIVISION 04 – MASONRY

04 20 00	UNIT MASONRY
04 22 00	CONCRETE UNIT MASONRY
04 72 00	CAST STONE MASONRY

DIVISION 05 – METALS

05 12 00	STRUCTURAL STEEL FRAMING
05 50 00	METAL FABRICATIONS

05 52 13 PIPE AND TUBE RAILINGS

DIVISION 06 – WOOD, PLASTICS AND COMPOSITES

- 06 10 00 ROUGH CARPENTRY
- 06 16 00 SHEATHING
- 06 17 53 SHOP-FABRICATED WOOD TRUSSES
- 06 20 13 EXTERIOR FINISH CARPENTRY
- 06 20 23 INTERIOR FINISH CARPENTRY
- 06 44 00 ORNAMENTAL WOODWORK

DIVISION 07 – THERMAL AND MOISTURE PROTECTION

- 07 14 16 COLD FLUID-APPLIED WATERPROOFING
- 07 21 00 THERMAL INSULATION
- 07 30 10 ROOF UNDERLAYMENT
- 07 31 13 ASPHALT SHINGLES
- 07 53 23 ETHYLENE-PROPYLENE-DIENE-MONOMER (EPDM) ROOFING
- 07 71 00 ROOF SPECIALTIES
- 07 84 13 PENETRATION FIRESTOPPING
- 07 92 00 JOINT SEALANTS

DIVISION 08 – OPENINGS

- 08 11 13 HOLLOW METAL DOORS AND FRAMES
- 08 41 13 ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS
- 08 44 13 GLAZED ALUMINUM CURTAIN WALLS
- 08 51 13 ALUMINUM WINDOWS
- 08 71 00 DOOR HARDWARE
- 08 80 00 GLAZING

DIVISION 09 – FINISHES

- 09 29 00 GYPSUM BOARD
- 09 51 13 ACOUSTICAL PANEL CEILINGS
- 09 65 13 RESILIENT BASE AND ACCESSORIES
- 09 65 19 RESILIENT TILE FLOORING
- 09 68 13 TILE CARPETING
- 09 91 23 PAINTING

DIVISION 10 – SPECIALTIES

- 10 14 00 SIGNAGE
- 10 28 00 TOILET, BATH, AND LAUNDRY ACCESSORIES
- 10 44 16 FIRE EXTINGUISHERS

DIVISION 11 – EQUIPMENT

NO WORK THIS SECTION

DIVISION 12 – FURNISHINGS

12 32 16MANUFACTURED PLASTIC-LAMINATE-FACED CASEWORK12 36 23.13PLASTIC-LAMINATE CLAD COUNTERTOPS12 36 61SOLID SURFACING COUNTERTOPS

DIVISION 13 – SPECIAL CONSTRUCTION

NO WORK THIS SECTION

DIVISION 14 – CONVEYING EQUIPMENT

14 24 00 MACHINE ROOM-LESS HYDRAULIC PASSENGER ELEVATORS

DIVISION 21 – FIRE SUPPRESSION

NO WORK THIS SECTION

- 22 05 13 COMMON MOTOR REQUIPREMENTS FOR PLUMBING EQUIPMENT 22 05 17 SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING 22 05 18 ESCUTCHEONS FOR PLUMBING PIPING 22 05 19 METERS AND GAGES FOR PLUMBING PIPING 22 05 23.12 BALL VALVES FOR PLUMBING PIPING 22 05 23.14 CHECK VALVES FOR PLUMBING PIPING 22 05 23.15 GATE VALVES FOR PLUMBING PIPING 22 05 29 HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT 22 05 48.13 VIBRATION CONTROLS FOR PLUMBING PIPING AND EQUIPMENT 22 05 53 IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT 22 07 19 PLUMBING PIPING INSULATION 22 11 16 DOMESTIC WATER PIPING 22 11 19 DOMESTIC WATER PIPING SPECIALTIES 22 11 23.21 INLINE, DOMESTIC-WATER PUMPS 22 13 16 SANITARY WASTE AND VENT PIPING 22 13 19 SANITARY WASTE PIPING SPECIALTIES 22 13 19.13 SANITARY DRAINS 22 14 29 SUMP PUMPS 22 34 00 FUEL-FIRED, DOMESTIC-WATER HEATERS 22 41 00 **RESIDENTIAL PLUMBING FIXTURES** 22 42 13.13 COMMERCIAL WATER CLOSETS 22 42 16.13 COMMERCIAL LAVATORIES
- 22 42 16.16 COMMERCIAL SINKS

DIVISION 23 – HEATING, VENTILATING AND AIR CONDITIONING

- 23 05 13 COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
- 23 05 17 SLEEVES AND SLEEVE SEALS FOR HVAC PIPING
- 23 05 18 ESCUTCHEONS FOR HVAC PIPING
- 23 05 29 HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
- 23 05 48.13 VIBRATION CONTROLS FOR HVAC
- 23 05 53 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
- 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC
- 23 07 13 DUCT INSULATION
- 23 07 19 HVAC PIPING INSULATION
- 23 11 23 FACILITY NATURAL-GAS PIPING
- 23 31 13 METAL DUCTS
- 23 33 00 AIR DUCT ACCESSORIES
- 23 33 46 FLEXIBLE DUCTS
- 23 34 23 HVAC POWER VENTILATORS
- 23 37 13.13 AIR DIFFUSERS
- 23 37 13.23 REGISTERS AND GRILLES
- 23 54 16.13 GAS-FIRED FURNACES
- 23 81 26 SPLIT-SYSTEM AIR-CONDITIONERS
- 23 82 36 FINNED-TUBE RADIATION HEATERS

23 82 39.19 WALL AND CEILING UNIT HEATERS

DIVISION 26 – ELECTRICAL

- 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
- 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- 26 05 29 HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
- 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS
- 26 05 43 UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS
- 26 05 44 SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING
- 26 05 53 IDENTIFICATION FOR ELECTRICAL SYSTEMS
- 26 05 72 OVERCURRENT PROTECTIVE DEVICE SHORT-CIRCUIT STUDY
- 26 05 73 OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY
- 26 05 74 OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY
- 26 09 23 LIGHTING CONTROL DEVICES
- 26 24 16 PANELBOARDS
- 26 27 26 WIRING DEVICES
- 26 28 13 FUSES
- 26 28 16 ENCLOSED SWITCHES AND CIRCUIT BREAKERS
- 26 43 13 SURGE PROTECTION FOR LOW VOLTAGE POWER EQUIPMENT
- 26 51 19 LED INTERIOR LIGHTING

DIVISION 27 - COMMUNICATIONS

- 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS
- 27 05 28 PATHWAYS FOR COMMUNICATIONS SYSTEMS
- 27 11 00 COMMUNICATIONS EQUIPMENT ROOM FITTINGS
- 27 13 23 COMMUNICATIONS BACKBONE CABLING
- 27 15 13 COMMUNICATIONS HORIZONTAL CABLING

DIVISION 28 – ELECTRONIC SAFETY AND SECURITY

28 31 11 DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

DIVISION 31 – EARTHWORK

31 62 16 STEEL HELICAL PILES

END

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 220513 - COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

- 2.1 GENERAL MOTOR REQUIREMENTS
 - A. Comply with NEMA MG 1 unless otherwise indicated.
 - B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 220513

SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop collar.
- B. Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40, galvanized, with plain ends and integral welded waterstop collar.
- C. Galvanized-Steel Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- D. PVC Pipe Sleeves: ASTM D1785, Schedule 40.
- E. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
- F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

2.2 SLEEVE-SEAL SYSTEMS

A. Description:

- 1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
- 2. Designed to form a hydrostatic seal of 20 psig minimum.
- 3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
- 4. Pressure Plates: Carbon steel.
- 5. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, ASTM B633 of length required to secure pressure plates to sealing elements.

2.3 GROUT

- A. Description: Nonshrink, for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C1107/C1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 - 2. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

- 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.
- E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping and fill materials specified in Section 078413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6]: Steel pipe sleeves.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6: Steel pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6: Steel pipe sleeves with sleeve-seal system.

- 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: Steel pipe sleeves.
- 5. Interior Partitions:
 - a. Piping Smaller Than NPS 6: Steel pipe sleeves.

END OF SECTION 220517

SECTION 220518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
- B. One-Piece, Stamped-Steel Type: With polished, chrome-plated finish and spring-clip fasteners.
- C. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.
- D. Split-Plate, Stamped-Steel Type: With polished, chrome-plated finish; concealed and exposed-rivet hinge; and spring-clip fasteners.

2.2 FLOOR PLATES

- A. Split Floor Plates: Cast brass with concealed hinge.
- B. One-piece floor plates: Cast-iron flange with holes for fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep pattern.
 - b. Chrome-Plated Piping: One-piece cast brass or split-casting brass with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece stamped steel or split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece cast brass with polished, chrome-plated finish.
 - e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece stamped steel or split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 - f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece cast brass with polished, chrome-plated finish.
 - g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece stamped steel or split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 - h. Bare Piping in Unfinished Service Spaces: One-piece cast brass with rough-brass finish.
 - i. Bare Piping in Equipment Rooms: One-piece cast brass with rough-brass finish.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping: One-piece, floor plate.

3.2 FIELD QUALITY CONTROL

A. Using new materials, replace broken and damaged escutcheons and floor plates.

END OF SECTION 220518

SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Liquid-in-glass thermometers.
 - 2. Thermowells.
 - 3. Gage attachments.
 - 4. Test plugs.
 - 5. Test-plug kits.
- B. Related Requirements:
 - 1. Section 221119 "Domestic Water Piping Specialties" for water meters.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

- 2.1 LIQUID-IN-GLASS THERMOMETERS
 - A. Metal-Case, Compact-Style, Liquid-in-Glass Thermometers:

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Trerice, H. O. Co</u>.
 - b. Or approved equal.
- 2. Standard: ASME B40.200.
- 3. Case: Cast aluminum; 6-inch nominal size.
- 4. Case Form: Back angle or straight unless otherwise indicated.
- 5. Tube: Glass with magnifying lens and blue or red organic liquid.
- 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
- 7. Window: Glass or plastic.
- 8. Stem: Aluminum or brass and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
- 9. Connector: 3/4 inch, with ASME B1.1 screw threads.
- 10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 THERMOWELLS

- A. Thermowells:
 - 1. Standard: ASME B40.200.
 - 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 - 3. Material for Use with Copper Tubing: CNR or CUNI.
 - 4. Material for Use with Steel Piping: CRES or CSA.
 - 5. Type: Stepped shank unless straight or tapered shank is indicated.
 - 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 - 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 - 8. Bore: Diameter required to match thermometer bulb or stem.
 - 9. Insertion Length: Length required to match thermometer bulb or stem.
 - 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 - 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 PRESSURE GAGES

- A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

- a. <u>Ametek U.S. Gauge</u>.
- b. <u>REOTEMP Instrument Corporation</u>.
- c. <u>Trerice, H. O. Co</u>.
- d. <u>WATTS</u>.
- e. <u>Weiss Instruments, Inc</u>.
- f. <u>Winters Instruments U.S.</u>
- g. Or approved equal.
- 2. Standard: ASME B40.100.
- 3. Case: Sealed type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
- 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
- 5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
- 6. Movement: Mechanical, with link to pressure element and connection to pointer.
- 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
- 8. Pointer: Dark-colored metal.
- 9. Window: Glass or plastic.
- 10. Ring: Metal or Brass.
- 11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.4 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.
- B. Valves: Brass ball or stainless-steel needle, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

2.5 TEST PLUGS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Flow Design, Inc.
 - 2. <u>Trerice, H. O. Co</u>.
 - 3. <u>WATTS</u>.
 - 4. <u>Weiss Instruments, Inc</u>.
 - 5. Or approved equal.
- B. Description: Test-station fitting made for insertion into piping tee fitting.
- C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.
- D. Thread Size: NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe thread.
- E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

F. Core Inserts: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

2.6 TEST-PLUG KITS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Flow Design, Inc.
 - 2. <u>Trerice, H. O. Co</u>.
 - 3. <u>WATTS</u>.
 - 4. <u>Weiss Instruments, Inc</u>.
 - 5. Or approved equal.
- B. Furnish one test-plug kit(s) containing one thermometer(s), one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.
- C. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F.
- D. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F.
- E. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch- diameter dial and probe. Dial range shall be at least 0 to 200 psig.
- F. Carrying Case: Metal or plastic, with formed instrument padding.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
- F. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

- G. Install valve and snubber in piping for each pressure gage for fluids.
- H. Install test plugs in piping tees.
- I. Install thermometers in the following locations:
 - 1. Inlet and outlet of each water heater.
- J. Install pressure gages in the following locations:
 - 1. Building water service entrance into building.
 - 2. Inlet and outlet of each pressure-reducing valve.
 - 3. Suction and discharge of each domestic water pump.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

- A. Thermometers at inlet and outlet of each domestic water heater shall be the following:
 - 1. Metal case, compact-style, liquid-in-glass type.
 - 2. Direct-mounted, light-activated type.
 - 3. Test plug with chlorosulfonated polyethylene synthetic or EPDM self-sealing rubber inserts.
- B. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Domestic Cold-Water Piping: 0 to 100 deg F.
- B. Scale Range for Domestic Hot-Water Piping: 0 to 250 deg F.

3.6 PRESSURE-GAGE SCHEDULE

- A. Pressure gages at discharge of each water service into building shall be the following:
 - 1. Sealed, direct-mounted, metal case.

- 2. Test plug with chlorosulfonated polyethylene synthetic or EPDM self-sealing rubber inserts.
- B. Pressure gages at inlet and outlet of each water pressure-reducing valve shall be the following:
 - 1. Sealed, direct-mounted, metal case.
 - 2. Test plug with chlorosulfonated polyethylene synthetic or EPDM self-sealing rubber inserts.
- C. Pressure gages at suction and discharge of each domestic water pump shall be the following:
 - 1. Sealed, direct-mounted, metal case.
 - 2. Test plug with chlorosulfonated polyethylene synthetic or EPDM self-sealing rubber inserts.
- 3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE
 - A. Scale Range for Water Service Piping: 0 to 160 psi.
 - B. Scale Range for Domestic Water Piping: 0 to 160 psi.

END OF SECTION 220519

SECTION 220523.12 - BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze ball valves.
 - 2. Iron ball valves.

1.3 DEFINITIONS

A. CWP: Cold working pressure.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of valve.
 - 1. Certification that products comply with NSF 61and NSF 372.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, and soldered ends.
 - 3. Set ball valves open to minimize exposure of functional surfaces.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B1.20.1 for threads for threaded end valves.
 - 2. ASME B16.1 for flanges on iron valves.
 - 3. ASME B16.5 for flanges on steel valves.
 - 4. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 5. ASME B16.18 for solder-joint connections.
 - 6. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 and NSF 372 for valve materials for potable-water service.
- D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- F. Valve Sizes: Same as upstream piping unless otherwise indicated.
- G. Valve Actuator Types:
 - 1. Gear Actuator: For quarter-turn valves NPS 4 and larger.
 - 2. Handlever: For quarter-turn valves smaller than NPS 4.
- H. Valves in Insulated Piping:
 - 1. Include 2-inch stem extensions.
 - 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 - 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRONZE BALL VALVES

- A. Bronze Ball Valves, Two-Piece with Full Port, and Bronze or Brass Trim, Threaded or Soldered Ends:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Apollo Flow Controls; Conbraco Industries, Inc</u>.

- b. <u>Crane; Crane Energy Flow Solutions</u>.
- c. <u>Hammond Valve</u>.
- d. Lance Valves.
- e. <u>Milwaukee Valve Company</u>.
- f. <u>NIBCO INC</u>.
- g. <u>WATTS</u>.
- h. <u>Zurn Industries, LLC</u>.
- 2. Description:
 - a. Standard: MSS SP-110 or MSS-145.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded and soldered.
 - f. Seats: PTFE.
 - g. Stem: Bronze or brass.
 - h. Ball: Chrome-plated brass.
 - i. Port: Full.
- B. Bronze Ball Valves, Two-Piece with Full Port and Stainless-Steel Trim:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Apollo Flow Controls; Conbraco Industries, Inc</u>.
 - b. <u>Crane; Crane Energy Flow Solutions</u>.
 - c. <u>Hammond Valve</u>.
 - d. Lance Valves.
 - e. <u>Milwaukee Valve Company</u>.
 - f. <u>NIBCO INC</u>.
 - g. <u>WATTS</u>.
 - 2. Description:
 - a. Standard: MSS SP-110 or MSS-145.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded or soldered.
 - f. Seats: PTFE.
 - g. Stem: Stainless steel.
 - h. Ball: Stainless steel, vented.
 - i. Port: Full.

2.3 IRON BALL VALVES

A. Iron Ball Valves, Class 125:

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>American Valve, Inc</u>.
 - b. Apollo Flow Controls; Conbraco Industries, Inc.
 - c. <u>WATTS</u>.
- 2. Description:
 - a. Standard: MSS SP-72.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Split body.
 - d. Body Material: ASTM A126, gray iron.
 - e. Ends: Flanged or threaded.
 - f. Seats: PTFE.
 - g. Stem: Stainless steel.
 - h. Ball: Stainless steel.
 - i. Port: Full.

PART 3 - EXECUTION

- 3.1 EXAMINATION
 - A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
 - B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
 - C. Examine threads on valve and mating pipe for form and cleanliness.
 - D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
 - E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.

- D. Install valves in position to allow full stem movement.
- E. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
- B. Select valves with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valveend option or press-end option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 4. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.

3.4 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze ball valves, two-piece with full port and stainless steel trim. Provide with threaded and solder-joint ends.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 - 2. Iron ball valves, Class 125.

END OF SECTION 220523.12

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 220523.14 - CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze lift check valves.
 - 2. Bronze swing check valves.
 - 3. Iron swing check valves.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene-diene terpolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of valve.
 - 1. Certification that products comply with NSF 61.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.

- 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B1.20.1 for threads for threaded end valves.
 - 2. ASME B16.1 for flanges on iron valves.
 - 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 4. ASME B16.18 for solder joint.
 - 5. ASME B31.9 for building services piping valves.
- C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.
- D. Drinking Water System Components Health Effects and Drinking Water System Components Lead Content Compliance: NSF 61 and NSF 372.
- E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- G. Valve Sizes: Same as upstream piping unless otherwise indicated.
- H. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE LIFT CHECK VALVES

- A. Bronze Lift Check Valves with Bronze Disc, Class 125:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Crane; Crane Energy Flow Solutions</u>.
 - b. Jenkins Valves; Crane Energy Flow Solutions.
 - c. <u>Stockham; Crane Energy Flow Solutions</u>.
 - 2. Description:

- a. Standard: MSS SP-80, Type 1.
- b. CWP Rating: 200 psig.
- c. Body Design: Vertical flow.
- d. Body Material: ASTM B61 or ASTM B62, bronze.
- e. Ends: Threaded or soldered. See valve schedule articles.
- f. Disc: Bronze.

2.3 BRONZE SWING CHECK VALVES

- A. Bronze Swing Check Valves with Bronze Disc, Class 125:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>American Valve, Inc</u>.
 - b. <u>Crane; Crane Energy Flow Solutions</u>.
 - c. <u>Hammond Valve</u>.
 - d. Jenkins Valves; Crane Energy Flow Solutions.
 - e. <u>Milwaukee Valve Company</u>.
 - f. <u>NIBCO INC</u>.
 - g. <u>Powell Valves</u>.
 - h. <u>Stockham; Crane Energy Flow Solutions</u>.
 - i. <u>WATTS</u>.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B62, bronze.
 - e. Ends: Threaded or soldered. See valve schedule articles.
 - f. Disc: Bronze.

2.4 IRON SWING CHECK VALVES

- A. Iron Swing Check Valves with Metal Seats, Class 125:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Crane; Crane Energy Flow Solutions</u>.
 - b. <u>Hammond Valve</u>.
 - c. Jenkins Valves; Crane Energy Flow Solutions.
 - d. <u>Milwaukee Valve Company</u>.
 - e. <u>NIBCO INC</u>.
 - f. <u>Powell Valves</u>.
 - g. <u>Stockham; Crane Energy Flow Solutions</u>.
 - h. <u>WATTS</u>.

- 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Clear or full waterway.
 - d. Body Material: ASTM A126, gray iron with bolted bonnet.
 - e. Ends: Flanged or threaded. See valve schedule articles.
 - f. Trim: Bronze.
 - g. Gasket: Asbestos free.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Check Valves: Install check valves for proper direction of flow.
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Lift Check Valves: With stem upright and plumb.
- F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller:
 - 1) Bronze swing check valves with bronze disc.
 - 2) Iron swing check valves with metal seats, Class 125, with threaded or flanged end connections.
- B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
- C. End Connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded or soldered or press-ends.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged or threaded.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged or threaded.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged.
- 3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE
 - A. Pipe NPS 2 and Smaller:
 - 1. Bronze swing check valves with bronze disc, Class 125, with soldered or threaded end connections.
 - 2. Bronze swing check valves with press-end connections.
 - B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron swing check valves with metal seats, Class 125, with threaded or flanged end connections.

END OF SECTION 220523.14

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 220523.15 - GATE VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze gate valves.
 - 2. Iron gate valves.
 - 3. Chainwheels.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. NRS: Nonrising stem.
- C. OS&Y: Outside screw and yoke.
- D. RS: Rising stem.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of valve.
 - 1. Certification that products comply with NSF 61 and NSF 372.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set gate valves closed to prevent rattling.
- B. Use the following precautions during storage:

- 1. Maintain valve end protection.
- 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B1.20.1 for threads for threaded end valves.
 - 2. ASME B16.1 for flanges on iron valves.
 - 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 4. ASME B16.18 for solder joint.
 - 5. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 and NSP 372 for valve materials for potable-water service.
- D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- F. Valve Sizes: Same as upstream piping unless otherwise indicated.
- G. RS Valves in Insulated Piping: With 2-inch stem extensions.
- H. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE GATE VALVES

- A. Bronze Gate Valves, NRS, Class 125:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>American Valve, Inc</u>.
 - b. <u>Crane; Crane Energy Flow Solutions</u>.
 - c. <u>Hammond Valve</u>.
 - d. Jenkins Valves; Crane Energy Flow Solutions.
- e. <u>Milwaukee Valve Company</u>.
- f. <u>NIBCO INC</u>.
- g. <u>Powell Valves</u>.
- h. <u>Stockham; Crane Energy Flow Solutions</u>.
- i. <u>WATTS</u>.
- 2. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 200 psig.
 - c. Body Material: Bronze with integral seat and screw-in bonnet.
 - d. Ends: Threaded or solder joint.
 - e. Stem: Bronze.
 - f. Disc: Solid wedge; bronze.
 - g. Packing: Asbestos free.
 - h. Handwheel: Malleable iron, bronze, or aluminum.

2.3 IRON GATE VALVES

- A. Iron Gate Valves, NRS, Class 125:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Crane; Crane Energy Flow Solutions</u>.
 - b. <u>Hammond Valve</u>.
 - c. Jenkins Valves; Crane Energy Flow Solutions.
 - d. <u>Milwaukee Valve Company</u>.
 - e. <u>NIBCO INC</u>.
 - f. <u>Powell Valves</u>.
 - g. <u>Stockham; Crane Energy Flow Solutions</u>.
 - h. <u>WATTS</u>.
 - 2. Description:
 - a. Standard: MSS SP-70, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Material: Gray iron with bolted bonnet.
 - d. Ends: Flanged.
 - e. Trim: Bronze.
 - f. Disc: Solid wedge.
 - g. Packing and Gasket: Asbestos free.

2.4 CHAINWHEELS

A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

- 1. <u>Babbitt Steam Specialty Co</u>.
- 2. <u>Roto Hammer Industries</u>.
- 3. <u>Trumbull Industries</u>.
- B. Description: Valve actuation assembly with sprocket rim, chain guides, chain.
 - 1. Sprocket Rim with Chain Guides: Ductile iron, of type and size required for valve. Include zinc or epoxy coating.
 - 2. Chain: Hot-dip galvanized steel, of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install chainwheels on operators for gate valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.
- F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. Use gate valves for shutoff service only.
- B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
- C. For Grooved-End Copper Tubing: Valve ends may be grooved.
- 3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE
 - A. Pipe NPS 2 and Smaller:
 - 1. Bronze gate valves, NRS, Class 125 with threaded ends.
 - 2. Bronze gate valves, press ends.
 - B. Pipe NPS 2-1/2 and Larger: Iron gate valves, NRS, Class 125 with flanged ends.

END OF SECTION 220523.15

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Thermal hanger-shield inserts.
 - 4. Fastener systems.
 - 5. Pipe stands.
 - 6. Equipment supports.
- B. Related Requirements:
 - 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 - 2. Section 220548.13 "Vibration Controls for Plumbing Piping and Equipment" for vibration isolation devices.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers.
 - 2. Pipe stands.
 - 3. Equipment supports.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Include design calculations for designing trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- 1.5 QUALITY ASSURANCE
 - A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
 - B. Pipe Welding Qualifications: Qualify procedures and operators according to 2015 ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.
- B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 - 3. Design seismic-restraint hangers and supports for piping and equipment.

2.2 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized, hot-dip galvanized, or electro-galvanized.
 - 3. Nonmetallic Coatings: Plastic coated or epoxy powder coated.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- B. Copper Pipe and Tube Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly, made from structural-carbon-steel shapes, with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 THERMAL HANGER-SHIELD INSERTS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Carpenter & Paterson, Inc</u>.
 - 2. <u>Clement Support Services</u>.
 - 3. <u>National Pipe Hanger Corporation</u>.
 - 4. <u>Pipe Shields Inc</u>.
 - 5. <u>Piping Technology & Products, Inc</u>.
 - 6. <u>Rilco Manufacturing Co., Inc.</u>
 - 7. <u>Value Engineered Products, Inc</u>.
- B. Insulation-Insert Material for Cold Piping: ASTM C552, Type II cellular glass with 100-psig or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.
- C. Insulation-Insert Material for Hot Piping: ASTM C552, Type II cellular glass with 100-psig or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

- A. Mechanical-Expansion Anchors: Insert-wedge-type anchors, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Indoor Applications: Zinc-coated steel.
 - 2. Outdoor Applications: Stainless steel.

2.6 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

- B. Compact Pipe Stand:
 - 1. Description: Single base unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
 - 2. Base: Single, vulcanized rubber, molded polypropylene, or polycarbonate.
 - 3. Hardware: Galvanized steel or polycarbonate.
 - 4. Accessories: Protection pads.
- C. Low-Profile, Single-Base, Single-Pipe Stand:
 - 1. Description: Single base with vertical and horizontal members, and pipe support, for roof installation without membrane protection.
 - 2. Base: Single, vulcanized rubber, molded polypropylene, or polycarbonate.
 - 3. Vertical Members: Two galvanized-steel, continuous-thread, 1/2-inch rods.
 - 4. Horizontal Member: Adjustable horizontal, galvanized-steel pipe support channels.
 - 5. Pipe Supports: Roller.
 - 6. Hardware: Galvanized steel.
 - 7. Accessories: Protection pads.
 - 8. Height: 12 inches above roof.
- D. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structuralcarbon-steel shapes.

2.8 MATERIALS

- A. Structural Steel: ASTM A36/A36M carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size, or install intermediate supports for smaller-diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A36/A36M carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Thermal Hanger-Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Powder-actuated fasteners are not acceptable.
 - 2. Install mechanical-expansion anchors in concrete, after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Pipe Stand Installation:
 - 1. Pipe Stand Types, except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 - 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 077200 "Roof Accessories" for curbs.
- G. Pipe-Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.
- H. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- I. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

- K. Install lateral bracing with pipe hangers and supports to prevent swaying.
- L. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms, and install reinforcing bars through openings at top of inserts.
- M. Load Distribution: Install hangers and supports, so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- N. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- O. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating Above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating Below Ambient Air Temperature: Use thermal hanger-shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39 protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal hanger-shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40 protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal hanger-shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 - 6. Thermal Hanger Shields: Install with insulation of same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment, and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections, so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded, shop-painted areas. Paint exposed areas immediately after erecting hangers and supports. Use same materials as those used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded, shop-painted areas on miscellaneous metal are specified in Section 099123 "Interior Painting."

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finishes.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.
- F. Use and corrosion-resistant attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- H. Use padded hangers for piping that is subject to scratching.
- I. Use thermal hanger-shield inserts for insulated piping and tubing.
- J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow offcenter closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.

- 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
- 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
- 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steelpipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steelpipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with Ubolt to retain pipe.
- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction occurs.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction occurs.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction occurs but vertical adjustment is unnecessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction occurs and vertical adjustment is unnecessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation, in addition to expansion and contraction, is required.
- K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment of up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11 split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

- M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable-Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
 - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
 - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
 - 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal Hanger-Shield Inserts: For supporting insulated pipe.
- O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.

- 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
- 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
- 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
- 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
- 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
- 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
- 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- P. Comply with MSS SP-58 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- R. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.
- S. Use pipe-positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 220548.13 - VIBRATION CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Elastomeric isolation pads.
 - 2. Elastomeric hangers.
 - 3. Mechanical anchor bolts.
- B. Related Requirements:
 - 1. Section 230548.13 "Vibration Controls for HVAC" for devices for HVAC equipment and systems.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device type required.
- B. Shop Drawings:
 - 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment.
- C. Delegated-Design Submittal: For each vibration isolation device.
 - 1. Include design calculations for selecting vibration isolators.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show coordination of vibration isolation device installation for plumbing piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.
- B. Qualification Data: For testing agency.
- C. Welding certificates.
- D. Field quality-control Report

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 ELASTOMERIC ISOLATION PADS

- A. Elastomeric Isolation Pads:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Ace Mountings Co., Inc</u>.
 - b. <u>California Dynamics Corporation</u>.
 - c. <u>Isolation Technology, Inc</u>.
 - d. <u>Kinetics Noise Control, Inc</u>.
 - e. <u>Mason Industries, Inc</u>.
 - f. <u>Vibration Eliminator Co., Inc</u>.
 - g. <u>Vibration Isolation</u>.
 - h. <u>Vibration Mountings & Controls, Inc</u>.
 - 2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
 - 3. Size: Factory or field cut to match requirements of supported equipment.
 - 4. Pad Material: Oil and water resistant with elastomeric properties.
 - 5. Surface Pattern: Smooth or ribbed pattern.
 - 6. Infused nonwoven cotton or synthetic fibers.
 - 7. Load-bearing metal plates adhered to pads.
 - 8. Sandwich-Core Material: Resilient and elastomeric.
 - a. Surface Pattern: Smooth or ribbed pattern.
 - b. Infused nonwoven cotton or synthetic fibers.

9. deformation or failure.

2.2 ELASTOMERIC HANGERS

- A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods: .
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Ace Mountings Co., Inc</u>.
 - b. <u>California Dynamics Corporation</u>.
 - c. <u>Isolation Technology, Inc</u>.
 - d. <u>Kinetics Noise Control, Inc</u>.
 - e. <u>Mason Industries, Inc</u>.
 - f. Vibration Eliminator Co., Inc.
 - g. Vibration Mountings & Controls, Inc.
 - 2. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 - 3. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.3 MECHANICAL ANCHOR BOLTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper B-Line, Inc.
 - 2. Hilti, Inc.
 - 3. Kinetics Noise Control, Inc.
 - 4. Mason Industries, Inc.
- B. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E488.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 VIBRATION CONTROL DEVICE INSTALLATION

- A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."
- B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.
- C. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- D. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- E. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- F. Drilled-in Anchors:
 - Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 - 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 - 5. Test to 90 percent of rated proof load of device.
 - 6. Measure isolator restraint clearance.
 - 7. Measure isolator deflection.
 - 8. Verify snubber minimum clearances.
 - 9. Test and adjust restrained-air-spring isolator controls and safeties.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

END OF SECTION 220548.13

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Valve tags.
 - 5. Warning tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- C. Valve numbering scheme.
- D. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Material and Thickness: Brass, 0.032-inch aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger

lettering for greater viewing distances. Include secondary lettering two-thirds to threequarters the size of principal lettering.

- 4. Fasteners: Stainless-steel rivets or self-tapping screws.
- 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Black.
- C. Background Color: Red.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

- C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

2.4 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link chain, beaded chain, or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

- A. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.
 - 1. Size: 3 by 5-1/4 inches minimum.
 - 2. Fasteners: Reinforced grommet and wire or string.
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Safety yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

- A. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- B. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.
- C. Pipe Label Color Schedule:
 - 1. Domestic Water Piping
 - a. Background: Safety green.
 - b. Letter Colors: White.
 - 2. Sanitary Waste Piping:
 - a. Background Color: Safety white.
 - b. Letter Color: Black.

3.5 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Cold Water: 1-1/2 inches, round.
 - b. Hot Water: 1-1/2 inches, round.
 - 2. Valve-Tag Colors:
 - a. Cold Water: Natural.
 - b. Hot Water: Natural.
 - 3. Letter Colors:
 - a. Cold Water: Black.
 - b. Hot Water: Black.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 220553

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following plumbing piping services:
 - 1. Domestic cold-water piping.
 - 2. Domestic hot-water piping.
 - 3. Domestic recirculating hot-water piping.
 - 4. Supplies and drains for handicap-accessible lavatories and sinks.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E84 by a testing agency acceptable to authorities having

jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

- 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
- 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
- C. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 - 1. Supply and Drain Protective Shielding Guards: ICC A117.1.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.

- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C534, Type I for tubular materials.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Aeroflex USA, Inc</u>.; Aerocel.
 - b. <u>Armacell LLC</u>; AP Armaflex.
 - c. <u>K-Flex USA</u>; Insul-Lock, K-Fit Elbow, Tee, and P-Trap, and K-FLEX LS.
- G. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Johns Manville; a Berkshire Hathaway company</u>; Micro-Lok.
 - b. <u>Knauf Insulation</u>; Earthwool 1000 Degree Pipe Insulation with ECOSE Technology.
 - c. <u>Manson Insulation Inc</u>.; Alley-K.
 - d. <u>Owens Corning</u>; Fiberglas Pipe Insulation.
 - 2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Aeroflex USA, Inc</u>.; Aeroseal.
 - b. <u>Armacell LLC</u>; Armaflex 520 Adhesive.
 - c. <u>Foster Brand; H. B. Fuller Construction Products</u>; 85-75.
 - d. <u>K-Flex USA</u>; R-373 Contact Adhesive.
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

- 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-127.
 - b. <u>Foster Brand; H. B. Fuller Construction Products</u>; 85-60/85-70.
- D. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products;</u> CP-82.
 - b. <u>Foster Brand; H. B. Fuller Construction Products</u>; 85-20.
 - c. <u>Mon-Eco Industries, Inc</u>.; 22-25.

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. Foster Brand; H. B. Fuller Construction Products; 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: Comply with ASTM ASTM E96/E96M, Procedure B, 0.013 perm at 43-mil dry film thickness
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids ContentL ASTM D1644, 58 percent by colume and 70 percent by weight.
 - 5. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-10.
 - b. Foster Brand; H. B. Fuller Construction Products; 46-50.
 - c. <u>Knauf Insulation</u>; EXPERT Mastics KI-700 ASJ.
 - d. Mon-Eco Industries, Inc.; 55-50.
 - e. <u>Vimasco Corporation</u>; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM E96, greater than 1.0 perm at manufacturer's recommended dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Color: White.

2.4 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-50 AHV2.
 - b. <u>Foster Brand; H. B. Fuller Construction Products</u>; 30-36.
 - c. <u>Vimasco Corporation</u>; 713 and 714.
 - 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fireresistant lagging cloths over pipe insulation.
 - 4. Service Temperature Range: 0 to plus 180 deg F.
 - 5. Color: White.

2.5 SEALANTS

- A. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-76.
 - b. Or approved equal.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.
 - 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.

2.7 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Avery Dennison Corporation, Specialty Tapes Division</u>; Fasson 0836.
 - b. <u>Ideal Tape Co., Inc., an American Biltrite Company</u>; Ideal Tape Cold Seal 728 ASJ.
 - c. <u>Knauf Insulation</u>; EXPERT Tapes ASJ Tape.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.8 SECUREMENTS

- A. Bands:
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>ITW Insulation Systems; Illinois Tool Works, Inc</u>.; Gerrard Strapping and Seals.
 - b. <u>RPR Products, Inc</u>.; Insul-Mate Strapping and Seals.
 - 2. Stainless Steel: ASTM A167 or ASTM A240/A240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.
 - 3. Aluminum: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- C. Wire: 0.062-inch soft-annealed, stainless steel.

2.9 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Piping Enclosures,:
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Truebro</u>; Model LAV-GUARD #103.
 - b. <u>Zurn Industries, LLC</u>; Tubular Brass Plumbing Products Operation.
 - c. Or approved equal.

- 2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and coldwater supplies and trap and drain piping. Comply with ADA requirements.
- 3. Color: White

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.

- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
- 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.

- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.8 FINISHES

- A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three

locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.
- 3.10 PIPING INSULATION SCHEDULE, GENERAL
 - A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
 - B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.
- 3.11 INDOOR PIPING INSULATION SCHEDULE
 - A. Domestic Cold Water (to include trap primer lines):
 - 1. NPS 1 and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 - 2. NPS 1-1/4 and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 - B. Domestic Hot and Recirculated Hot Water:
 - NPS 1-1/4 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 - 2. NPS 1-1/2 and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 - C. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 3/4 inch thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 - c. Protective Shielding Piping Enclosures.
 - D. Floor Drains, Traps, and Sanitary Drain Piping within 10 Feet of Drain Receiving Condensate and Equipment Drain Water below 60 Deg F:

- 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

END OF SECTION 220719

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Copper tube and fittings.
 - 2. Dielectric fittings.

1.3 ACTION SUBMITTALS

A. Product Data: For transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS

- A. System purging and disinfecting activities report.
- B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
- B. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372. Include marking "NSF-pw" on piping.

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B88, Type L water tube, drawn temper.
- B. Soft Copper Tube: ASTM B88, Type K and ASTM B88, Type L water tube, annealed temper.

- C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.
- D. Wrought-Copper, Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
- E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
- F. Copper Unions:
 - 1. MSS SP-123.
 - 2. Cast-copper-alloy, hexagonal-stock body.
 - 3. Ball-and-socket, metal-to-metal seating surfaces.
 - 4. Solder-joint or threaded ends.
- G. Copper, Brass, or Bronze Pressure-Seal-Joint Fittings:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Elkhart Products Corporation</u>.
 - b. NIBCO INC.
 - c. <u>Viega LLC</u>.
 - 2. Fittings: Cast-brass, cast-bronze or wrought-copper with EPDM O-ring seal in each end.
 - 3. Minimum 200-psig working-pressure rating at 250 deg F.

2.3 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>A.Y. McDonald Mfg. Co</u>.
 - b. <u>Capitol Manufacturing Company</u>.
 - c. <u>Central Plastics Company</u>.
 - d. <u>HART Industrial Unions, LLC</u>.
 - e. <u>Jomar Valve</u>.
 - f. <u>Matco-Norca</u>.
 - g. <u>WATTS</u>.
 - h. <u>Wilkins</u>.
 - i. <u>Zurn Industries, LLC</u>
 - 2. Standard: ASSE 1079.
 - 3. Pressure Rating: 125 psig minimum at 180 deg F.

- 4. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Capitol Manufacturing Company</u>.
 - b. <u>Central Plastics Company</u>.
 - c. <u>Matco-Norca</u>.
 - d. <u>WATTS</u>.
 - e. <u>Wilkins</u>.
 - f. <u>Zurn Industries, LLC</u>.
 - 2. Standard: ASSE 1079.
 - 3. Factory-fabricated, bolted, companion-flange assembly.
 - 4. Pressure Rating: 125 psig minimum at 180 deg F.
 - 5. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
- D. Dielectric-Flange Insulating Kits:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Advance Products & Systems, Inc</u>.
 - b. <u>Calpico, Inc</u>.
 - c. <u>Central Plastics Company</u>.
 - d. <u>Pipeline Seal and Insulator, Inc</u>.
 - 2. Nonconducting materials for field assembly of companion flanges.
 - 3. Pressure Rating: 150 psig.
 - 4. Gasket: Neoprene or phenolic.
 - 5. Bolt Sleeves: Phenolic or polyethylene.
 - 6. Washers: Phenolic with steel backing washers.
- E. Dielectric Nipples:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Elster Perfection Corporation</u>.
 - b. <u>Grinnell Mechanical Products</u>.
 - c. <u>Matco-Norca</u>.
 - d. <u>Precision Plumbing Products</u>.
 - e. <u>Victaulic Company</u>.
 - 2. Standard: IAPMO PS 66.
 - 3. Electroplated steel nipple complying with ASTM F1545.

- 4. Pressure Rating and Temperature: 300 psig at 225 deg F.
- 5. End Connections: Male threaded or grooved.
- 6. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install underground copper tube in PE encasement according to ASTM A674 or AWWA C105/A21.5.
- D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 221119 "Domestic Water Piping Specialties."
- E. Install shutoff valve immediately upstream of each dielectric fitting.
- F. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 221119 "Domestic Water Piping Specialties."
- G. Install domestic water piping level without pitch and plumb.
- H. Rough-in domestic water piping for water-meter installation according to utility company's requirements.
- I. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- J. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

- K. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- L. Install piping to permit valve servicing.
- M. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- N. Install piping free of sags and bends.
- O. Install fittings for changes in direction and branch connections.
- P. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- Q. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping."
- R. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 221123 "Domestic Water Pumps."
- S. Install thermometers on outlet piping from each water heater. Comply with requirements for thermometers in Section 220519 "Meters and Gages for Plumbing Piping."
- T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.

- 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.
- E. Soldered Joints for Copper Tubing: Apply ASTM B813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B828 or CDA's "Copper Tube Handbook."
- F. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools and procedure recommended by pressure-seal-fitting manufacturer. Leave insertion marks on pipe after assembly.
- G. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 TRANSITION FITTING INSTALLATION

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Underground Domestic Water Piping:
 - 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
 - 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.
- C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.

3.5 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples.

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger, support products, and installation in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.

- 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
- 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support vertical piping and tubing at base and at each floor.
- C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
- D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
- E. Install supports for vertical copper tubing every 10 feet.
- F. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
 - 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 - 3. NPS 2: 10 feet with 3/8-inch rod.
- G. Install supports for vertical steel piping every 15 feet.
- H. Support piping and tubing not listed in this article according to MSS SP-58 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 - 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 - 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.

4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.8 IDENTIFICATION

- A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."
- B. Label pressure piping with system operating pressure.

3.9 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Piping Inspections:
 - a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 - 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 - c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 - d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
 - 2. Piping Tests:
 - a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 - c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate

test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.

- e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
- f. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.10 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.11 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.

- 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
- c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
- d. Repeat procedures if biological examination shows contamination.
- e. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Prepare and submit reports of purging and disinfecting activities. Include copies of watersample approvals from authorities having jurisdiction.
- C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.12 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
- D. Under-building-slab, domestic water, building-service piping, NPS 3 and smaller, shall be the following:
 - 1. Soft copper tube, ASTM B88, Type K ASTM B88, Type L; wrought-copper, solder-joint fittings; and brazed, or copper pressure-seal fittings; and pressure-sealed joints.
- E. Under-building-slab, domestic water piping, NPS 1/2 and smaller, shall be the following:
 - 1. Soft copper tube, ASTM B88, Type L; wrought-copper, solder-joint fittings; and brazed joints.
 - 2. To include trap primer lines.
- F. Under-building-slab, domestic water piping, NPS 2 and 1/2, shall be the following:
 - 1. Hard or soft copper tube, ASTM B88, Type L; wrought-copper, solder-joint fittings; and brazed joints.
- G. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:
 - 1. Hard copper tube, ASTM B88, Type L; cast- or wrought-copper, solder-joint fittings; and brazed or soldered joints.
 - 2. Hard copper tube, ASTM B88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.

3.13 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 - 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
 - 3. Hot-Water Circulation Piping, Balancing Duty: Calibrated balancing valves.
 - 4. Drain Duty: Hose-end drain valves.
- B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 221116

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Vacuum breakers.
 - 2. Backflow preventers.
 - 3. Water pressure-reducing valves.
 - 4. Balancing valves.
 - 5. Strainers.
 - 6. Wall hydrants.
 - 7. Water-hammer arresters.
 - 8. Air vents.
 - 9. Trap-seal primer valves.
 - 10. Water meters.
- B. Related Requirements:
 - 1. Section 220519 "Meters and Gauges for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
 - 2. Section 221116 "Domestic Water Piping" for water meters.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For domestic water piping specialties.
 - 1. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

- A. Potable-water piping and components shall comply with NSF 61 and NSF 14.
- B. Comply with NSF 372 for low lead.
- 2.2 PERFORMANCE REQUIREMENTS
 - A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

- A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Apollo Flow Controls; Conbraco Industries, Inc</u>.
 - b. <u>FEBCO; A WATTS Brand</u>.
 - c. WATTS.
 - d. <u>Zurn Industries, LLC</u>.
 - 2. Standard: ASSE 1001.
 - 3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 - 4. Body: Bronze.
 - 5. Inlet and Outlet Connections: Threaded.
 - 6. Finish: Chrome plated.
- B. Hose-Connection Vacuum Breakers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Apollo Flow Controls; Conbraco Industries, Inc</u>.
 - b. <u>MIFAB, Inc</u>.
 - c. <u>WATTS</u>.
 - d. <u>Zurn Industries, LLC</u>.

- 2. Standard: ASSE 1011.
- 3. Body: Bronze, nonremovable, with manual drain.
- 4. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
- 5. Finish: Chrome or nickel plated.

2.4 BACKFLOW PREVENTERS

- A. Reduced-Pressure-Principle Backflow Preventers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Apollo Flow Controls; Conbraco Industries, Inc.</u>
 - b. FEBCO; A WATTS Brand.
 - c. <u>Flomatic Corporation</u>.
 - d. WATTS.
 - e. <u>Zurn Industries, LLC</u>.
 - 2. Standard: ASSE 1013.
 - 3. Operation: Continuous-pressure applications.
 - 4. Pressure Loss: 17 psig maximum, through middle third of flow range.
 - 5. Size: As indicated on drawings.
 - 6. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
 - 7. End Connections: Threaded for NPS 2 and smaller.
 - 8. Configuration: Designed for horizontal, straight-through flow.
 - 9. Accessories:
 - a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
 - b. Air-Gap Fitting: ASME A112.1.2, matching backflow-preventer connection.
- B. Beverage-Dispensing-Equipment Backflow Preventers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Apollo Flow Controls; Conbraco Industries, Inc.</u>
 - b. <u>WATTS</u>.
 - c. <u>Zurn Industries, LLC</u>.
 - 2. Standard: ASSE 1022.
 - 3. Operation: Continuous-pressure applications.
 - 4. Size: NPS 1/4 or NPS 3/8.
 - 5. Body: Stainless steel.
 - 6. End Connections: Threaded.
- C. Backflow-Preventer Test Kits:

1. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with testprocedure instructions.

2.5 BALANCING VALVES

- A. Memory-Stop Balancing Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Flow Controls; Conbraco Industries, Inc.
 - b. <u>Hammond Valve</u>.
 - c. <u>Milwaukee Valve Company</u>.
 - d. <u>NIBCO INC</u>.
 - 2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
 - 3. Pressure Rating: 400-psig minimum CWP.
 - 4. Size: NPS 2 or smaller.
 - 5. Body: Copper alloy.
 - 6. Port: Standard or full port.
 - 7. Ball: Chrome-plated brass.
 - 8. Seats and Seals: Replaceable.
 - 9. End Connections: Solder joint or threaded.
 - 10. Handle: Vinyl-covered steel with memory-setting device.

2.6 STRAINERS FOR DOMESTIC WATER PIPING

- A. Y-Pattern Strainers:
 - 1. Pressure Rating: 125 psig minimum unless otherwise indicated.
 - 2. Body: Bronze for NPS 2 and smaller.
 - 3. End Connections: Threaded for NPS 2 and smaller.
 - 4. Screen: Stainless steel with round perforations unless otherwise indicated.
 - 5. Perforation Size:
 - a. Strainers NPS 2 and Smaller: 0.033 inch.
 - 6. Drain: Factory-installed, hose-end drain valve.

2.7 WALL HYDRANTS

- A. Nonfreeze Wall Hydrants:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

- a. Jay R. Smith Mfg. Co.
- b. Josam Company.
- c. <u>MIFAB, Inc</u>.
- d. <u>Tyler Pipe; a subsidiary of McWane Inc</u>.
- e. <u>WATTS</u>.
- f. <u>Woodford Manufacturing Company</u>.
- g. <u>Zurn Industries, LLC</u>.
- 2. Standard: ASME A112.21.3M for concealed-outlet, self-draining wall hydrants.
- 3. Pressure Rating: 125 psig.
- 4. Operation: Loose key.
- 5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
- 6. Inlet: NPS 3/4 or NPS 1.
- 7. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
- 8. Box: Deep, flush mounted with cover.
- 9. Box and Cover Finish: Chrome plated.
- 10. Operating Keys(s): One with each wall hydrant.

2.8 DRAIN VALVES

- A. Ball-Valve-Type, Hose-End Drain Valves:
 - 1. Standard: MSS SP-110 for standard-port, two-piece ball valves.
 - 2. Pressure Rating: 400-psig minimum CWP.
 - 3. Size: NPS 3/4.
 - 4. Body: Copper alloy.
 - 5. Ball: Chrome-plated brass.
 - 6. Seats and Seals: Replaceable.
 - 7. Handle: Vinyl-covered steel.
 - 8. Inlet: Threaded or solder joint.
 - 9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

2.9 WATER-HAMMER ARRESTERS

- A. Water-Hammer Arresters:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>AMTROL, Inc</u>.
 - b. Jay R. Smith Mfg. Co.
 - c. <u>Josam Company</u>.
 - d. <u>MIFAB, Inc</u>.
 - e. <u>Tyler Pipe; a subsidiary of McWane Inc</u>.

- f. <u>WATTS</u>.
- g. Zurn Industries, LLC.
- 2. Standard: ASSE 1010 or PDI-WH 201.
- 3. Type: Metal bellows or Copper tube with piston.
- 4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.10 AIR VENTS

- A. Bolted-Construction Automatic Air Vents:
 - 1. Body: Bronze.
 - 2. Pressure Rating and Temperature: 125-psig minimum pressure rating at 140 deg F.
 - 3. Float: Replaceable, corrosion-resistant metal.
 - 4. Mechanism and Seat: Stainless steel.
 - 5. Size: NPS 3/8 minimum inlet.
 - 6. Inlet and Vent Outlet End Connections: Threaded.
- B. Welded-Construction Automatic Air Vents:
 - 1. Body: Stainless steel.
 - 2. Pressure Rating: 150-psig minimum pressure rating.
 - 3. Float: Replaceable, corrosion-resistant metal.
 - 4. Mechanism and Seat: Stainless steel.
 - 5. Size: NPS 3/8 minimum inlet.
 - 6. Inlet and Vent Outlet End Connections: Threaded.

2.11 TRAP-SEAL PRIMER DEVICE

- A. Supply-Type, Trap-Seal Primer Device:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg. Co.
 - b. <u>MIFAB, Inc</u>.
 - c. <u>WATTS</u>.
 - d. <u>Zurn Industries, LLC</u>.
 - 2. Standard: ASSE 1018.
 - 3. Pressure Rating: 125 psig minimum.
 - 4. Body: Bronze.
 - 5. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
 - 6. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
 - 7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

2.12 WATER METERS

A. Displacement-Type Water Meters:

- 1. Standard: AWWA C700.
- 2. Pressure Rating: 150-psig working pressure.
- 3. Body Design: Nutating disc; totalization meter.
- 4. Registration: In gallons or cubic feet as required by utility company.
- 5. Case: Bronze.
- 6. End Connections: Threaded.
- B. Meter must be inspected by Division of water.
- C. Meter must be approved by the City of Lancaster Utilities Collection Office

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Backflow Preventers: Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 - 1. Locate backflow preventers in same room as connected equipment or system.
 - 2. Install drain for backflow preventers with atmospheric-vent drain connection with airgap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
 - 3. Do not install bypass piping around backflow preventers.
- B. Water Regulators: Install with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.
- C. Balancing Valves: Install in locations where they can easily be adjusted.
- D. Temperature-Actuated, Water Mixing Valves: Install with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 - 1. Install cabinet-type units recessed in or surface mounted on wall as specified.
- E. Y-Pattern Strainers: For water, install on supply side of each control valve, water pressurereducing valve, solenoid valve, and pump.
- F. Water-Hammer Arresters: Install in water piping according to PDI-WH 201.
- G. Air Vents: Install vents at high points of water piping.

H. Supply-Type, Trap-Seal Primer Device: Install with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

3.2 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping specialties adjacent to equipment and machines, allow space for service and maintenance.
- C. Comply with requirements for grounding equipment in Section 260526 "Grounding and Bonding for Electrical Systems."

3.3 IDENTIFICATION

- A. Plastic Labels for Equipment: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Reduced-pressure-principle backflow preventers.
 - 2. Water pressure-reducing valves.
 - 3. Calibrated balancing valves.
 - 4. Primary, thermostatic, water mixing valves.
 - 5. Manifold, thermostatic, water mixing-valve assemblies.
 - 6. Supply-type, trap-seal primer valves.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test each reduced-pressure-principle backflow preventer according to authorities having jurisdiction and the device's reference standard.
- B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

- B. Set field-adjustable flow set points of balancing valves.
- C. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION 221119

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 221123.21 - INLINE, DOMESTIC-WATER PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. In-line, sealless centrifugal pumps.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction materials, rated capacities, certified performance curves with operating points plotted on curves, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Detail pumps and adjacent equipment. Show support locations, type of support, weight on each support, required clearances, and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Structural members to which pumps will be attached.
 - 2. Size and location of initial access modules for acoustical tile.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For inline, domestic-water pumps to include in operation and maintenance manuals.
- 1.6 DELIVERY, STORAGE, AND HANDLING
 - A. Retain shipping flange protective covers and protective coatings during storage.

- B. Protect bearings and couplings against damage.
- C. Comply with pump manufacturer's written instructions for handling.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. UL Compliance: UL 778 for motor-operated water pumps.
- C. Drinking Water System Components Health Effects and Drinking Water System Components Lead Content Compliance: NSF 61 and NSF 372.

2.2 IN-LINE, SEALLESS CENTRIFUGAL PUMPS

- A. Description: Factory-assembled and -tested, in-line, close-coupled, canned-motor, sealless, overhung-impeller centrifugal pumps.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Bell & Gossett Domestic Pump; ITT Industries.
 - 2. <u>Grundfos Pumps Corp</u>.
 - 3. <u>TACO Comfort Solutions, Inc</u>.
- C. Capacities and Characteristics:
 - 1. Capacity: 1 gpm.
 - 2. Total Dynamic Head: 5 ft.
 - 3. Inlet and Outlet Size: 3/4 NPS.
 - 4. Pump Speed: 1800 rpm.
 - 5. Pump Control: As indicated on drawing.
 - 6. Electrical Characteristics: as indicated on drawing.
- D. Pump Construction:
 - 1. Pump and Motor Assembly: Hermetically sealed, replaceable-cartridge type with motor and impeller on common shaft and designed for installation with pump and motor shaft horizontal.
 - 2. Minimum Working Pressure: 125 psig.
 - 3. Maximum Continuous Operating Temperature: 220 deg F.
 - 4. Casing: Stainless steel, with threaded or companion-flange connections.
 - 5. Impeller: As indicated on drawing..

6. Motor: Single speed.

2.3 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.4 CONTROLS

- A. Thermostats: Electric; adjustable for control of hot-water circulation pump.
 - 1. Type: Water-immersion temperature sensor, for installation in piping.
 - 2. Range: 50 to 125 deg F.
 - 3. Operation of Pump: On or off.
 - 4. Transformer: Provide if required.
 - 5. Power Requirement: 24 V ac.
 - 6. Settings: Start pump at 105 deg F and stop pump at 120 deg F.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for domestic-water-piping system to verify actual locations of piping connections before pump installation.

3.2 PUMP INSTALLATION

- A. Comply with HI 1.4.
- B. Mount pumps in orientation complying with manufacturer's written instructions.
- C. Install continuous-thread hanger rods and vibration isolation of size required to support pump weight.
 - 1. Comply with requirements for vibration isolation devices specified in Section 220548.13 "Vibration Controls for Plumbing Piping and Equipment." Fabricate brackets or supports as required.
 - 2. Comply with requirements for hangers and supports specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
- D. Install thermostats in hot-water return piping.

3.3 PIPING CONNECTIONS

- A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to inline, domestic-water pumps, allow space for service and maintenance.
- C. Connect domestic-water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
- D. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for strainers specified in Section 221119 "Domestic Water Piping Specialties." Comply with requirements for valves specified in the following:
 - 1. Section 220523.12 "Ball Valves for Plumbing Piping."
 - 2. Section 220523.14 "Check Valves for Plumbing Piping."
 - 3. Section 220523.15 "Gate Valves for Plumbing Piping."
 - 4. Install pressure gauge at suction of each pump and pressure gauge at discharge of each pump. Install at integral pressure-gauge tappings where provided or install pressure-gauge connectors in suction and discharge piping around pumps. Comply with requirements for pressure gauges and snubbers specified in Section 220519 "Meters and Gages for Plumbing Piping."

3.4 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring between temperature controllers and devices.
- C. Interlock pump between water heater and hot-water storage tank with water heater burner and time-delay relay.

3.5 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections.
- E. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- F. Inline, domestic-water pump will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

3.7 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Check piping connections for tightness.
 - 3. Clean strainers on suction piping.
 - 4. Set thermostats, for automatic starting and stopping operation of pumps.
 - 5. Perform the following startup checks for each pump before starting:
 - a. Verify bearing lubrication.
 - b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 - c. Verify that pump is rotating in the correct direction.
 - 6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
 - 7. Start motor.
 - 8. Open discharge valve slowly.
 - 9. Adjust temperature settings on thermostats.
 - 10. Adjust timer settings.

3.8 ADJUSTING

A. Adjust inline, domestic-water pumps to function smoothly, and lubricate as recommended by manufacturer.

- B. Adjust initial temperature set points.
- C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 221123.21
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. PVC pipe and fittings.
 - 2. Specialty pipe fittings.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For hubless, single-stack drainage system. Include plans, elevations, sections, and details.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 WARRANTY

A. Listed manufacturers to provide labelling and warranty of their respective products.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: 10-foot head of water.
 - 2. Waste, Force-Main Piping: 50 psig.

2.2 PIPING MATERIALS

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
- 2.3 PVC PIPE AND FITTINGS
 - A. Solid-Wall PVC Pipe: ASTM D2665, drain, waste, and vent.
 - B. Cellular-Core PVC Pipe: ASTM F891, Schedule 40.
 - C. PVC Socket Fittings: ASTM D2665, made to ASTM D3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
 - D. Adhesive Primer: ASTM F656.
 - E. Solvent Cement: ASTM D2564.
- 2.4 SPECIALTY PIPE FITTINGS
 - A. Transition Couplings:
 - 1. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 - 2. Unshielded, Nonpressure Transition Couplings:
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) Dallas Specialty & Mfg. Co.
 - 2) <u>Fernco Inc</u>.
 - 3) <u>Froet Industries LLC</u>.
 - 4) <u>Mission Rubber Company, LLC; a division of MCP Industries</u>.
 - 5) <u>Plastic Oddities</u>.
 - 6) Or approved equal.
 - b. Standard: ASTM C1173.
 - c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - d. End Connections: Same size as and compatible with pipes to be joined.
 - e. Sleeve Materials:
 - 1) For Cast-Iron Soil Pipes: ASTM C564, rubber.
 - 2) For Plastic Pipes: ASTM F477, elastomeric seal or ASTM D5926, PVC.

- 3) For Dissimilar Pipes: ASTM D5926, PVC or other material compatible with pipe materials being joined.
- 3. Shielded, Nonpressure Transition Couplings:
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) <u>Cascade Waterworks Mfg. Co</u>.
 - 2) <u>Mission Rubber Company, LLC; a division of MCP Industries</u>.
 - 3) Or approved equal.
 - b. Standard: ASTM C1460.
 - c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - d. End Connections: Same size as and compatible with pipes to be joined.
- 4. Pressure Transition Couplings:
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) <u>Apollo Flow Controls; Conbraco Industries, Inc</u>.
 - 2) <u>Cascade Waterworks Mfg. Co</u>.
 - 3) Jay R. Smith Mfg. Co.
 - 4) <u>JCM Industries, Inc</u>.
 - 5) <u>Viking Johnson.</u>
 - 6) Or approved equal.
 - b. Standard: AWWA C219.
 - c. Description: Metal, sleeve-type same size as, with pressure rating at least equal to, and ends compatible with, pipes to be joined.
 - d. Center-Sleeve Material: Manufacturer's standard.
 - e. Gasket Material: Natural or synthetic rubber.
 - f. Metal Component Finish: Corrosion-resistant coating or material.
- B. Dielectric Fittings:
 - 1. Dielectric Unions:
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) <u>A.Y. McDonald Mfg. Co</u>.
 - 2) <u>Capitol Manufacturing Company</u>.
 - 3) <u>WATTS</u>.
 - 4) <u>Wilkins</u>.
 - 5) Zurn Industries, LLC.

- 6) <u>Or approved equal.</u>
- b. Description:
 - 1) Standard: ASSE 1079.
 - 2) Pressure Rating: 125 psig minimum at 180 deg F.
 - 3) End Connections: Solder-joint copper alloy and threaded ferrous.
- 2. Dielectric Flanges:
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) <u>Capitol Manufacturing Company</u>.
 - 2) <u>WATTS</u>.
 - 3) <u>Wilkins</u>.
 - 4) <u>Zurn Industries, LLC</u>.
 - 5) Or approved equal.
 - b. Description:
 - 1) Standard: ASSE 1079.
 - 2) Factory-fabricated, bolted, companion-flange assembly.
 - 3) Pressure Rating: 125 psig minimum at 180 deg F.
 - 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
- 3. Dielectric-Flange Insulating Kits:
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) Advance Products & Systems, Inc.
 - 2) <u>Calpico, Inc</u>.
 - 3) <u>Central Plastics Company</u>.
 - 4) <u>Pipeline Seal and Insulator, Inc</u>.
 - 5) Or approved equal.
 - b. Description:
 - 1) Nonconducting materials for field assembly of companion flanges.
 - 2) Pressure Rating: 150 psig.
 - 3) Gasket: Neoprene or phenolic.
 - 4) Bolt Sleeves: Phenolic or polyethylene.
 - 5) Washers: Phenolic with steel backing washers.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.
 - 1. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.
 - 2. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 220548.13 "Vibration Controls for Plumbing Piping and Equipment."
- K. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends.
 - 1. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.
 - 2. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe.
 - a. Straight tees, elbows, and crosses may be used on vent lines.

- 3. Do not change direction of flow more than 90 degrees.
- 4. Use proper size of standard increasers and reducers if pipes of different sizes are connected.
 - a. Reducing size of waste piping in direction of flow is prohibited.
- L. Lay buried building waste piping beginning at low point of each system.
 - 1. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
 - 2. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 - 3. Maintain swab in piping and pull past each joint as completed.
- M. Install soil and waste and vent piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Sanitary Waste: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 - 2. Horizontal Sanitary Waste Piping: 1 percent downward in direction of flow.
 - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- N. Install aboveground PVC piping according to ASTM D2665.
- O. Install underground PVC piping according to ASTM D2321.
- P. Install engineered soil and waste and vent piping systems as follows:
 - 1. Combination Waste and Vent: Comply with standards of authorities having jurisdiction.
 - 2. Hubless, Single-Stack Drainage System: Comply with ASME B16.45 and hubless, singlestack aerator fitting manufacturer's written installation instructions.
 - 3. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.
- Q. Plumbing Specialties:
 - 1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary waste gravity-flow piping.
 - a. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping.
 - b. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."
 - 2. Install drains in sanitary waste gravity-flow piping.
 - a. Comply with requirements for drains specified in Section 221319 "Sanitary Waste Piping Specialties."

- R. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- S. Install sleeves for piping penetrations of walls, ceilings, and floors.
 - 1. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- T. Install sleeve seals for piping penetrations of concrete walls and slabs.
 - 1. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- U. Install escutcheons for piping penetrations of walls, ceilings, and floors.
 - 1. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. PVC Piping: Join according to ASTM D2855 and ASTM D2665 appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

- A. Transition Couplings:
 - 1. Install transition couplings at joints of piping with small differences in ODs.
 - 2. In Waste Drainage Piping: Unshielded, nonpressure transition couplings.
 - 3. In Aboveground Force Main Piping: Fitting-type transition couplings.
 - 4. In Underground Force Main Piping:
 - a. NPS 1-1/2 and Smaller: Fitting-type transition couplings.
 - b. NPS 2 and Larger: Pressure transition couplings.
- B. Dielectric Fittings:
 - 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 - 2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
 - 3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
 - 4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 VALVE INSTALLATION

- A. Comply with requirements in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.14 "Check Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping" for general-duty valve installation requirements.
- B. Shutoff Valves:
 - 1. Install shutoff valve on each sewage pump discharge.
 - 2. Install gate or full-port ball valve for piping NPS 2 and smaller.
 - 3. Install gate valve for piping NPS 2-1/2 and larger.
- C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."] Section 220548.13 "Vibration Controls for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install stainless-steel pipe hangers for horizontal piping in corrosive environments.
 - 3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
 - 5. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 6. Install individual, straight, horizontal piping runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 7. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 8. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.
- E. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 - 2. NPS 3: 48 inches with 1/2-inch rod.

- 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
- 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
- F. Install supports for vertical PVC piping every 48 inches.
- G. Support piping and tubing not listed above according to MSS SP-58 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect waste and vent piping to the following:
 - 1. Plumbing Fixtures: Connect waste piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect waste and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 - 5. Comply with requirements for cleanouts and drains specified in Section 221319 "Sanitary Waste Piping Specialties."
 - 6. Equipment: Connect waste piping as indicated.
 - a. Provide shutoff valve if indicated and union for each connection.
 - b. Use flanges instead of unions for connections NPS 2-1/2 and larger.
- D. Connect force-main piping to the following:
 - 1. Sanitary Sewer: To exterior force main.
 - 2. Sewage Pump: To sewage pump discharge.
- E. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- F. Make connections according to the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 IDENTIFICATION

- A. Identify exposed sanitary waste and vent piping.
- B. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary waste and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired.
 - a. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced waste and vent piping until it has been tested and approved.
 - a. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test waste and vent piping except outside leaders on completion of roughing-in.
 - a. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water.
 - b. From 15 minutes before inspection starts to completion of inspection, water level must not drop.
 - c. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight.

- a. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg.
- b. Use U-tube or manometer inserted in trap of water closet to measure this pressure.
- c. Air pressure must remain constant without introducing additional air throughout period of inspection.
- d. Inspect plumbing fixture connections for gas and water leaks.
- 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
- 6. Prepare reports for tests and required corrective action.

3.10 CLEANING AND PROTECTION

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect sanitary waste and vent piping during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.
- D. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of waterbased latex paint.
- E. Repair damage to adjacent materials caused by waste and vent piping installation.

3.11 PIPING SCHEDULE

- A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
- B. Aboveground, soil and waste piping NPS 4 and smaller shall be the following:
 - 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- C. Aboveground, soil and waste piping NPS 5 and larger shall be the following:
 - 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- D. Aboveground, vent piping NPS 4 and smaller shall be the following:
 - 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- E. Underground, soil, waste, and vent piping NPS 4 and smaller shall be the following:
 - 1. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- F. Underground, soil and waste piping NPS 5 and larger shall be the following:

- 1. Solid-wall PVC pipe; PVC socket fittings; and solvent-cemented joints.
- 2. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.

END OF SECTION 221316

SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cleanouts.
 - 2. Roof flashing assemblies.
 - 3. Miscellaneous sanitary drainage piping specialties.

1.3 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene.
- B. FOG: Fats, oils, and greases.
- C. PVC: Polyvinyl chloride.
- 1.4 ACTION SUBMITTALS
- 1.5 Product Data: For each type of product. Include rated capacities, operating characteristics, and accessories.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For sanitary waste piping specialties to include in emergency, operation, and maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTIONS

- A. Sanitary waste piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14 for plastic sanitary waste piping specialty components.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing, and marked for intended location and application.

2.2 CLEANOUTS

- A. Cast-Iron Exposed Cleanouts:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg. Co.
 - b. Josam Company.
 - c. <u>MIFAB, Inc</u>.
 - d. <u>Tyler Pipe; a subsidiary of McWane Inc</u>.
 - e. <u>WATTS</u>.
 - f. <u>Zurn Industries, LLC</u>.
 - 2. Standard: ASME A112.36.2M.
 - 3. Size: Same as connected drainage piping
- B. Cast-Iron Exposed Floor Cleanouts:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg. Co.
 - b. Josam Company.
 - c. <u>Tyler Pipe; a subsidiary of McWane Inc</u>.
 - d. <u>WATTS</u>.
 - e. <u>Zurn Industries, LLC</u>.
 - 2. Standard: ASME A112.36.2M for heavy-duty, adjustable housing cleanout.

- 3. Size: Same as connected branch.
- C. Cast-Iron Wall Cleanouts:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg. Co.
 - b. Josam Company.
 - c. <u>MIFAB, Inc</u>.
 - d. <u>Tyler Pipe; a subsidiary of McWane Inc</u>.
 - e. <u>WATTS</u>.
 - f. <u>Zurn Industries, LLC</u>.
 - 2. Standard: ASME A112.36.2M. Include wall access.
 - 3. Size: Same as connected drainage piping.
 - 4. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 - 5. Closure Plug:
 - a. Countersunk or raised head.
 - b. Size: Same as or not more than one size smaller than cleanout size.
 - 6. Wall Access: Round, flat, chrome-plated brass or stainless-steel cover plate with screw.

2.3 ROOF FLASHING ASSEMBLIES

- A. Roof Flashing Assemblies:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Acorn Engineering Company</u>.
 - b. <u>Thaler Metal Industries Ltd</u>.
 - c. <u>Zurn Industries, LLC</u>.
 - d. Or approved equal.
 - 2. Description: Manufactured assembly made of 4.0-lb/sq. ft., 0.0625-inch- thick, lead flashing collar and skirt extending at least 6 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.
 - a. Low-Silhouette Vent Cap: With vandal-proof vent cap.

2.4 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

- A. Deep-Seal Traps:
 - 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
 - 2. Size: Same as connected waste piping.

- a. NPS 2: 4-inch- minimum water seal.
- b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.
- B. Floor-Drain, Trap-Seal Primer Fittings:
 - 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
 - 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.
- C. Air-Gap Fittings:
 - 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 - 2. Body: Bronze or cast iron.
 - 3. Inlet: Opening in top of body.
 - 4. Outlet: Larger than inlet.
 - 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.
- D. Sleeve Flashing Device:
 - 1. Description: Manufactured, cast-iron fitting, with clamping device that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 1 inch above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 - 2. Size: As required for close fit to riser or stack piping.
- E. Stack Flashing Fittings:
 - 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
 - 2. Size: Same as connected stack vent or vent stack.
- F. Vent Caps:
 - 1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
 - 2. Size: Same as connected stack vent or vent stack.
- G. Frost-Resistant Vent Terminals:
 - 1. Description: Manufactured or shop-fabricated assembly constructed of copper, lead-coated copper, or galvanized steel.
 - 2. Design: To provide 1-inch enclosed air space between outside of pipe and inside of flashing collar extension, with counterflashing.

2.5 MOTORS

- A. General requirements for motors are specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, motor shall be large enough, so driven load will not require motor to operate in service factor range above 1.0.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Equipment Mounting:
 - 1. Comply with requirements for vibration-isolation devices specified in Section 220548.13 "Vibration Controls for Plumbing Piping and Equipment."
- B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate at base of each vertical soil and waste stack.
- C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- E. Assemble open drain fittings and install with top of hub 1 inch above floor.
- F. Install deep-seal traps on floor drains and other waste outlets, if indicated.
- G. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 - 2. Size: Same as floor drain inlet.
- H. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

- I. Install sleeve and sleeve seals with each riser and stack passing through floors with waterproof membrane.
- J. Install vent caps on each vent pipe passing through roof.
- K. Install frost-resistant vent terminals on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.
- L. Install frost-proof vent caps on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.
- M. Install wood-blocking reinforcement for wall-mounting-type specialties.
- N. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

- A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION

- A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required.
- B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 - 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- C. Set flashing on floors and roofs in solid coating of bituminous cement.
- D. Secure flashing into sleeve and specialty clamping ring or device.
- E. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

3.4 LABELING AND IDENTIFYING

- A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.
 - 1. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections, and prepare test reports.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.6 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 221319.13 - SANITARY DRAINS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Floor drains.

1.3 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene styrene.
- B. FRP: Fiberglass-reinforced plastic.
- C. HDPE: High-density polyethylene.
- D. PE: Polyethylene.
- E. PP: Polypropylene.
- F. PVC: Polyvinyl chloride.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 DRAIN ASSEMBLIES

- A. Sanitary drains shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14 for plastic sanitary piping specialty components.

2.2 FLOOR DRAINS

- A. Cast-Iron Floor Drains:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg. Co.
 - b. <u>Josam Company</u>.
 - c. <u>MIFAB, Inc</u>.
 - d. <u>Wade; a subsidiary of McWane Inc</u>.
 - e. <u>WATTS</u>.
 - f. <u>Zurn Industries, LLC</u>.
 - 2. Standard: ASME A112.6.3.
 - 3. Type: As indicated on drawings.
 - 4. Outlet: Bottom.
 - 5. Top Shape: Round.
 - 6. Top Loading Classification: Heavy Duty.
 - 7. Trap Pattern: Standard P-trap.
 - 8. Trap Features: Trap-seal primer valve drain connection.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 - 1. Position floor drains for easy access and maintenance.
 - 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage.
 - 3. Set with grates depressed according to the following drainage area radii:
 - a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 - b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 - c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1inch total depression.
 - 4. Install floor-drain flashing collar or flange, so no leakage occurs between drain and adjoining flooring.
 - a. Maintain integrity of waterproof membranes where penetrated.
 - 5. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

B. Install open drain fittings with top of hub 1 inch above floor.

3.2 CONNECTIONS

- A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Comply with requirements in Section 221319 "Sanitary Waste Piping Specialties" for backwater valves, air admittance devices and miscellaneous sanitary drainage piping specialties.
- C. Install piping adjacent to equipment to allow service and maintenance.

3.3 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319.13

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 221429 - SUMP PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Submersible sump pumps.
 - 2. Sump-pump basins and basin covers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and mounting attachment details.
 - 2. Include diagrams for power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pumps and controls, to include in operation and maintenance manuals.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Retain shipping flange protective covers and protective coatings during storage.
- B. Protect bearings and couplings against damage.
- C. Comply with manufacturer's written instructions for handling.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

2.2 SUBMERSIBLE SUMP PUMPS

- A. Submersible, Fixed-Position, Single-Seal Sump Pumps:
 - 1. <u>Basis-of-Design Product:</u> Subject to compliance with requirements, provide <u>Zoeller</u> <u>Company</u>; Model No. 940-0012 or a comparable product by one of the following:
 - a. <u>Bell & Gossett; a Xylem brand</u>.
 - b. <u>Liberty Pumps</u>.
 - c. Or approved equal.
 - 2. Description: Factory-assembled and -tested sump-pump unit.
 - 3. Pump Type: Submersible, end-suction, single-stage, close-coupled, overhung-impeller, centrifugal sump pump as defined in HI 1.1-1.2 and HI 1.3.
 - 4. Pump Casing: Cast iron, with strainer inlet, legs that elevate pump to permit flow into impeller, and vertical discharge for piping connection.
 - 5. Impeller: Statically and dynamically balanced, ASTM A48/A48M, Class No. 25 A cast iron and ASTM B584, cast bronze, design for clear wastewater handling, and keyed and secured to shaft.
 - 6. Pump and Motor Shaft: Stainless steel, with factory-sealed, grease-lubricated ball bearings.
 - 7. Seal: Mechanical.
 - 8. Motor: Hermetically sealed, capacitor-start type; with built-in overload protection; lifting eye or lug; and three-conductor, waterproof power cable of length required and with grounding plug and cable-sealing assembly for connection at pump.
 - a. Motor Housing Fluid: Oil.
 - 9. Simplex Controls:
 - a. Enclosure: NEMA 250, Type 1; wall mounted.
 - b. Switch Type: Mechanical-float type, in NEMA 250, Type 6 enclosures with mounting rod and electric cables.
 - c. Controls per manufacturer's standard.

2.3 SUMP-PUMP CAPACITIES AND CHARACTERISTICS

- A. Unit Capacity: 50 gpm.
- B. Number of Pumps: One.
- C. Each Pump:
 - 1. Capacity: 50 gpm.
 - 2. Total Dynamic Head: 15 feet.
 - 3. Speed: 3450 RPM.
 - 4. Electrical Characteristics:
 - a. Motor Horsepower: 4/10 hp.
 - b. Volts: 115 V ac.
 - c. Phases: Single.
 - d. Hertz: 60.
- D. Unit Electrical Characteristics:
 - 1. Full-Load Amperes: 8.5 A.
- 2.4 SUMP-PUMP BASINS AND BASIN COVERS
 - A. Basins: Factory-fabricated, watertight, cylindrical, basin sump with top flange and sidewall openings for pipe connections.
 - 1. Material: Fiberglass or Polyethylene.
 - 2. Reinforcement: Mounting plates for pumps, fittings, and accessories.
 - 3. Anchor Flange: Same material as or compatible with basin sump, cast in or attached to sump, in location and of size required to anchor basin in concrete slab.
 - B. Basin Covers: Fabricate metal cover with openings having gaskets, seals, and bushings; for access to pumps, pump shafts, control rods, discharge piping, vent connections, and power cables.
 - 1. Reinforcement: Steel or cast iron, capable of supporting foot traffic for basins installed in foot-traffic areas.
 - C. Capacities and Characteristics:
 - 1. Diameter: 18 inches.
 - 2. Depth: 30 inches.
 - 3. Top Discharge Vertical Outlet:
 - a. Discharge Pipe Size: 1-1/2" NPS.
 - b. Type: Hubbed inside.
 - 4. Cover Material: Cast iron or steel with bituminous coating.

- 5. Manhole Required in Cover: No.
- 6. Vent Size: Not required.

2.5 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- B. Motors for submersible pumps shall be hermetically sealed.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation and filling are specified in Section 312000 "Earth Moving."

3.2 EXAMINATION

A. Examine roughing-in for plumbing piping to verify actual locations of storm drainage piping connections before sump pump installation.

3.3 INSTALLATION

A. Pump Installation Standards: Comply with HI 1.4 for installation of sump pumps.

3.4 CONNECTIONS

A. Where installing piping adjacent to equipment, allow space for service and maintenance.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test, inspect, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections:
 - 1. Perform each visual and mechanical inspection.

- 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
- 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Pumps and controls will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.7 ADJUSTING

- A. Adjust pumps to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust control set points.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain controls and pumps.

END OF SECTION 221429

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 223400 - FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Gas-fired, tankless, domestic-water heaters.
 - 2. Domestic-water heater accessories.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings:
 - 1. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For each type of gas-fired, tankless, domestic-water heater, from manufacturer.
- B. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.
- C. Source quality-control reports.
- D. Field quality-control reports.
- E. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuel-fired, domestic-water heaters to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE/IESNA Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IESNA 90.1.
- C. ASME Compliance:
 - 1. Where ASME-code construction is indicated, fabricate and label commercial, domesticwater heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 - 2. Where ASME-code construction is indicated, fabricate and label commercial, finnedtube, domestic-water heaters to comply with ASME Boiler and Pressure Vessel Code: Section IV.
- D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 Annex G, "Drinking Water System Components Health Effects."

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.8 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including storage tank and supports.
 - b. Faulty operation of controls.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 - 2. Warranty Periods: From date of Substantial Completion.
 - a. Gas-Fired, Tankless, Domestic-Water Heaters:
 - 1) Controls and Other Components: Three years.

b. Compression Tanks: Five years.

PART 2 - PRODUCTS

2.1 GAS-FIRED, TANKLESS, DOMESTIC-WATER HEATERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>A. O. Smith Corporation</u>.
 - 2. Bradford White Corporation.
 - 3. <u>Rheem Manufacturing Company</u>.
 - 4. <u>State Industries</u>.
- B. Standard: ANSI Z21.10.3/CSA 4.3 for gas-fired, instantaneous, domestic-water heaters for indoor application.
- C. Construction: Copper piping or tubing complying with NSF 61 Annex G barrier materials for potable water, without storage capacity.
 - 1. Tappings: ASME B1.20.1 pipe thread.
 - 2. Pressure Rating: 150 psig.
 - 3. Heat Exchanger: Copper tubing.
 - 4. Insulation: Comply with ASHRAE/IESNA 90.1.
 - 5. Jacket: Metal, with enameled finish, or plastic.
 - 6. Burner: For use with tankless, domestic-water heaters and natural-gas fuel.
 - 7. Automatic Ignition: Manufacturer's proprietary system for automatic, gas ignition.
 - 8. Temperature Control: Adjustable thermostat.
- D. Support: Bracket for wall mounting.
- E. See schedule on drawings.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

- A. Domestic-Water Compression Tanks:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>A. O. Smith Corporation</u>.
 - b. <u>AMTROL, Inc</u>.
 - c. <u>Honeywell</u>.
 - d. <u>State Industries</u>.
 - e. <u>TACO Comfort Solutions, Inc</u>.

- 2. Description: Steel, pressure-rated tank constructed with welded joints and factoryinstalled butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
- 3. Construction:
 - a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 - b. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 - c. Air-Charging Valve: Factory installed.
- 4. See schedule on drawings.
- B. Comply with requirements for ball-, butterfly-, or gate-type shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping."
 - 1. Comply with requirements for balancing valves specified in Section 221119 "Domestic Water Piping Specialties."
- C. Gas Shutoff Valves: ANSI Z21.15/CSA 9.1-M, manually operated. Furnish for installation in piping.
- D. Gas Pressure Regulators: ANSI Z21.18/CSA 6.3, appliance type. Include 1/2-psig pressure rating as required to match gas supply.
- E. Automatic Gas Valves: ANSI Z21.21/CSA 6.5, appliance, electrically operated, on-off automatic valve.
- F. Pressure Relief Valves: Include pressure setting less than domestic-water heater workingpressure rating.
 - 1. Gas-Fired, Domestic-Water Heaters: ANSI Z21.22/CSA 4.4-M.
- G. Vacuum Relief Valves: ANSI Z21.22/CSA 4.4-M.
- H. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Provide dimension that will support bottom of domestic-water heater a minimum of 18 inches above the floor.
- I. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.
- J. Accessories:
 - 1. Combination Combustion-Air Intake and Vent: PVC plastic fitting to combine combustion-air inlet and vent through outside roof.
 - 2. PVC Plastic Vent Materials:

- a. PVC Plastic Pipe: Schedule 40, complying with ASTM D1785.
- b. PVC Plastic Fittings: Schedule 40, complying with ASTM D2466, socket type.
- c. PVC Solvent Cement: ASTM D2564.

2.3 SOURCE QUALITY CONTROL

- A. Factory Tests: Test and inspect assembled domestic-water heaters specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.
- B. Hydrostatically test commercial domestic-water heaters to minimum of one and one-half times pressure rating before shipment.
- C. Domestic-water heaters will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

- A. Tankless, Domestic-Water Heater Mounting: Install tankless, domestic-water heaters at least 18 inches above floor on wall bracket.
 - 1. Maintain manufacturer's recommended clearances.
 - 2. Arrange units so controls and devices that require servicing are accessible.
 - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 5. Anchor domestic-water heaters to substrate.
- B. Install domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
 - 1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping."
- C. Install gas-fired, domestic-water heaters according to NFPA 54.
 - 1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.

- 2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
- 3. Install automatic gas valves on gas supplies to gas-fired, domestic-water heaters if required for operation of safety control.
- 4. Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves specified in Section 231123 "Facility Natural-Gas Piping."
- D. Install pressure relief valves in water piping for domestic-water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- E. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."
- F. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."
- G. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.
- H. Fill domestic-water heaters with water.
- I. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

- A. Comply with requirements for domestic-water piping specified in Section 221116 "Domestic Water Piping."
- B. Comply with requirements for gas piping specified in Section 231123 "Facility Natural-Gas Piping."
- C. Drawings indicate general arrangement of piping, fittings, and specialties.
- D. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."
3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
 - 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Domestic-water heaters will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain gas-fired, tankless domestic-water heaters.

END OF SECTION 223400

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 224100 - RESIDENTIAL PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Disposers.
- B. Related Requirements:
 - 1. Section 224216.16 "Commercial Sinks."

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for lavatories.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted plumbing fixtures.
- B. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For plumbing fixtures and faucets to include in emergency, operation, and operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 DISPOSERS

- A. Disposers: Continuous-feed household, food waste.
 - 1. Continuous-Feed Disposers:
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - 1) InSinkErator; a division of Emerson Electric Co.
 - 2) Or approved equal.
 - 2. Standards: ASSE 1008 and UL 430, and listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. General: Include reset button; wall switch; corrosion-resistant chamber with jamresistant, cutlery- or stainless-steel grinder or shredder; NPS 1-1/2 outlet; quickmounting, stainless-steel sink flange; antisplash guard; and combination cover/stopper.
 - 4. Motor: 120-V ac, 1725 rpm, 1/2 hp with overload protection.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing-fixture installation.
- B. Examine walls, floors, cabinets, and counters for suitable conditions where fixtures will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install plumbing fixtures level and plumb according to roughing-in drawings.
- B. Install traps on fixture outlets.
 - 1. Exception: Omit trap on fixtures with integral traps.
 - 2. Exception: Omit trap on indirect wastes unless otherwise indicated.
- C. Install disposer in outlet of each sink indicated to have a disposer. Install switch where indicated or in wall adjacent to sink if location is not indicated.

D. Seal joints between plumbing fixtures, counters, floors, and walls using sanitary-type, onepart, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

A. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust plumbing fixtures and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.

3.5 CLEANING AND PROTECTION

- A. After completing installation of plumbing fixtures, inspect and repair damaged finishes.
- B. Clean plumbing fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
- C. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 224100

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 224213.13 - COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Water closets.
 - 2. Flushometer tanks.

1.3 DEFINITIONS

- A. Effective Flush Volume: Average of two reduced flushes and one full flush per fixture.
- B. Remote Water Closet: Located more than 30 feet from other drain line connections or fixture and where less than 1.5 drainage fixture units are upstream of the drain line connection.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for water closets.
 - 2. Include rated capacities, operating characteristics, and furnished specialties and accessories.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 FLOOR-MOUNTED, BOTTOM-OUTLET WATER CLOSETS

- A. Water Closets: Floor mounted, floor outlet, close coupled (gravity tank), vitreous china.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>American Standard</u>.
 - b. <u>Crane Plumbing, L.L.C</u>.
 - c. <u>FNW; Ferguson Enterprises, Inc</u>.
 - d. <u>Kohler Co</u>.
 - e. <u>Mansfield Plumbing Products LLC</u>.
 - f. <u>Peerless Pottery Sales, Inc</u>.
 - g. <u>TOTO USA, INC</u>.
 - h. <u>Zurn Industries, LLC</u>.
 - 2. Bowl:
 - a. Standards: ASME A112.19.2/CSA B45.1, ASME A112.19.5, and ASSE 1037.
 - b. Bowl Type: Siphon jet.
 - c. Height: Handicapped/elderly.
 - d. Rim Contour: Elongated.
 - e. Water Consumption: Water saving.
 - f. Color: White.
 - 3. Toilet Seat: Included
 - 4. Supply Fittings:
 - a. Standard: ASME A112.18.1/CSA B125.1.
 - b. Supply Piping: Chrome-plated-brass pipe or chrome-plated-copper tube matching water-supply piping size. Include chrome-plated wall flange.
 - c. Stop: Chrome-plated-brass, one-quarter-turn, ball-type or compression stop with inlet connection matching water-supply piping type and size.
 - 1) Operation: Wheel handle.
 - d. Riser:
 - 1) Size: As indicated on drawings.
 - 2) Material: ASME A112.18.6, braided- or corrugated-stainless-steel flexible hose riser.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before water-closet installation.
- B. Examine walls and floors for suitable conditions where water closets will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Water-Closet Installation:
 - 1. Install level and plumb according to roughing-in drawings.
 - 2. Install floor-mounted water closets on bowl-to-drain connecting fitting attachments to piping or building substrate.
 - 3. Install accessible, wall-mounted water closets at mounting height for handicapped/elderly, according to ICC/ANSI A117.1.
- B. Wall Flange and Escutcheon Installation:
 - 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
 - 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
 - 3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- C. Joint Sealing:
 - 1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
 - 2. Match sealant color to water-closet color.
 - 3. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

- A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
- D. Where installing piping adjacent to water closets, allow space for service and maintenance.

3.4 ADJUSTING

- A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.
- B. Adjust water pressure at flushometer valves to produce proper flow.

3.5 CLEANING AND PROTECTION

- A. Clean water closets and fittings with manufacturers' recommended cleaning methods and materials.
- B. Install protective covering for installed water closets and fittings.
- C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION 224213.13

SECTION 224216.13 - COMMERCIAL LAVATORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Lavatories.
 - 2. Faucets.
 - 3. Supply fittings.
 - 4. Waste fittings.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for lavatories.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: Include diagrams for power, signal, and control wiring of automatic faucets.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Servicing and adjustments of automatic faucets.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 VITREOUS-CHINA, WALL-MOUNTED LAVATORIES

- A. Lavatory: Ledge back, vitreous china, wall mounted.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>American Standard</u>.
 - b. <u>Crane Plumbing, L.L.C</u>.
 - c. <u>Kohler Co</u>.
 - d. <u>Mansfield Plumbing Products LLC</u>.
 - e. <u>Sloan Valve Company</u>.
 - f. TOTO USA INC.
 - 2. Fixture:
 - a. Standard: ASME A112.19.2/CSA B45.1.
 - b. Type: For wall hanging.
 - c. Nominal Size: As indicated on drawings.
 - d. Faucet-Hole Punching: As indicated on drawings.
 - e. Faucet-Hole Location: Top.
 - f. Color: White.
 - g. Mounting Material: Chair carrier.
 - 3. Faucet: Solid-Brass, Automatically Operated Lavatory Faucets.
 - 4. Lavatory Mounting Height: Handicapped/elderly according to ICC A117.1.

2.2 SOLID-BRASS, AUTOMATICALLY OPERATED LAVATORY FAUCETS

- A. NSF Standard: Comply with NSF 372 for faucet materials that will be in contact with potable water.
- B. Lavatory Faucets: Automatic-type, hard-wired, electronic-sensor-operated, mixing, solid-brass valve.

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>American Standard</u>.
 - b. <u>Bradley Corporation</u>.
 - c. <u>Chicago Faucets; Geberit Company</u>.
 - d. <u>Kohler Co</u>.
 - e. <u>Moen Incorporated</u>.
 - f. <u>Sloan Valve Company</u>.
 - g. <u>TOTO USA, INC</u>.
 - h. <u>Zurn Industries, LLC</u>.
- 2. Standards: ASME A112.18.1/CSA B125.1 and UL 1951.
- 3. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 4. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
- 5. Body Type: As indicated on drawings.
- 6. Finish: Polished chrome plate.
- 7. Maximum Flow Rate: 0.5 gpm.
- 8. Spout Outlet: Aerator.

2.3 SUPPLY FITTINGS

- A. NSF Standard: Comply with NSF 372 for supply-fitting materials that will be in contact with potable water.
- B. Standard: ASME A112.18.1/CSA B125.1.
- C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.
- D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.
- E. Operation: Wheel handle.
- F. Risers:
 - 1. NPS 1/2.
 - 2. Chrome-plated, rigid-copper-pipe and brass straight or offset tailpieces riser.

2.4 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

- B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.
- C. Trap:
 - 1. Size: NPS 1-1/2 by NPS 1-1/4.
 - 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inchthick brass tube to wall; and chrome-plated, brass or steel wall flange.
 - 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch- thick stainless-steel tube to wall; and stainless-steel wall flange.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.
- B. Examine counters and walls for suitable conditions where lavatories will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install lavatories level and plumb according to roughing-in drawings.
- B. Install supports, affixed to building substrate, for wall-mounted lavatories.
- C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.
- D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- E. Seal joints between lavatories, counters, and walls using sanitary-type, one-part, mildewresistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."
- F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

- A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.
- B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

- A. After completing installation of lavatories, inspect and repair damaged finishes.
- B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
- C. Provide protective covering for installed lavatories and fittings.
- D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.13

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 224216.16 - COMMERCIAL SINKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Service basins.
 - 2. Utility sinks.
 - 3. Sink faucets.
 - 4. Supply fittings.
 - 5. Waste fittings.
- B. Related Requirements:
 - 1. Section 224100 "Residential Plumbing Fixtures" for disposer.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for sinks.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sinks to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 SERVICE BASINS

- A. Service Basins: Terrazzo, floor mounted.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Acorn Engineering Company</u>.
 - b. <u>Crane Plumbing, L.L.C</u>.
 - c. Fiat.
 - d. <u>Stern-Williams Co., Inc</u>.
 - 2. Fixture:
 - a. Standard: IAPMO PS 99.
 - b. Shape: Square.
 - c. Nominal Size: 24 by 24 inches.
 - d. Height: 10 inches.
 - e. Tiling Flange: Not required.
 - f. Rim Guard: On all top surfaces.
 - g. Color: Not applicable.
 - h. Drain: Grid with NPS 3 outlet.
 - 3. Mounting: On floor and flush to wall.
- 2.2 UTILITY SINKS
 - A. Utility Sinks: Stainless steel, counter mounted.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Eagle Group</u>.
 - b. <u>Elkay Manufacturing Co</u>.

c. Just Manufacturing.

- 2. Fixture:
 - a. Standard: ASME A112.19.3/CSA B45.4.
 - b. Type: Ledge back.
 - c. Number of Compartments: One.
 - d. Overall Dimensions: As indicated on drawings.
 - e. Compartment:
 - 1) Dimensions: As indicated on drawings..
 - 2) Drain: Grid with NPS 1-1/2 tailpiece and twist drain.
 - 3) Drain Location: Centered in compartment.
- 3. Faucet(s): .
 - a. Number Required: One.
 - b. Mounting: On ledge.
- 4. Supply Fittings:
 - a. Standard: ASME A112.18.1/CSA B125.1.
 - b. Supplies: Chrome-plated brass compression stop with inlet connection matching water-supply piping type and size.
 - 1) Operation: Wheel handle.
 - 2) Risers: NPS 1/2, chrome-plated, rigid-copper pipe.
- 5. Waste Fittings:
 - a. Standard: ASME A112.18.2/CSA B125.2.
 - b. Trap(s):
 - 1) Size: NPS 1-1/2.
 - 2) Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch- thick brass tube to wall; and chrome-plated brass or steel wall flange.
 - 3) Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inchthick stainless-steel tube to wall; and stainless-steel wall flange.
 - c. Continuous Waste:
 - 1) Size: NPS 1-1/2.
 - 2) Material: Chrome-plated, 0.032-inch- thick brass tube.
- 6. Mounting: On counter with sealant.

SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

- 2.1 GENERAL MOTOR REQUIREMENTS
 - A. Comply with NEMA MG 1 unless otherwise indicated.
 - B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Premium efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Multispeed Motors: Separate winding for each speed.
- F. Rotor: Random-wound, squirrel cage.
- G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- H. Temperature Rise: Match insulation rating.
- I. Insulation: Class F.
- J. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.
- K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 ADDITIONAL REQUIREMENTS FOR POLYPHASE MOTORS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 - 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Sleeves.
- 2. Stack-sleeve fittings.
- 3. Sleeve-seal systems.
- 4. Sleeve-seal fittings.
- 5. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop collar.
- B. Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40,, with plain ends and integral welded waterstop collar.
- C. Galvanized-Steel Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- D. PVC Pipe Sleeves: ASTM D1785, Schedule 40.

- E. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
- F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

2.2 STACK-SLEEVE FITTINGS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - 1. Jay R. Smith Mfg. Co.
- B. Description: Manufactured, cast-iron sleeve with integral cast flashing flange for use in waterproof floors and roofs. Include clamping ring, bolts, and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. <u>CALPICO, Inc</u>.
 - 3. <u>Metraflex Company (The)</u>.
- B. Description:
 - 1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 2. Designed to form a hydrostatic seal of 20-psig.
 - 3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size.
 - 4. Pressure Plates: Carbon steel.
 - 5. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, ASTM B633 of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

- A. Description:
 - 1. Manufactured plastic, sleeve-type, waterstop assembly, made for imbedding in concrete slab or wall.
 - 2. Plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

- A. Description: Nonshrink, recommended for interior and exterior sealing openings in nonfirerated walls or floors.
- B. Standard: ASTM C1107/C1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 - 2. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 3. Using grout, seal space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use sealants appropriate for size, depth, and location of joint.
- E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke-Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with

requirements for firestopping and fill materials specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

- A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 - 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."
 - 3. Install section of cast-iron soil pipe to extend sleeve to 3 inches above finished floor level.
 - 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 5. Using waterproof silicone sealant, seal space between top hub of stack-sleeve fitting and pipe.
- B. Fire-Resistance-Rated, Horizontal Assembly, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of floors at pipe penetrations. Seal pipe penetrations with fireand smoke-stop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal-system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings as new walls and slabs are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal space around outside of sleeve-seal fittings.

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.
- B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.

3.6 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls Above Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron sleeves.
 - b. Piping NPS 6 and Larger: Cast-iron pipe sleeves.
 - 2. Exterior Concrete Walls Below Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 4. Concrete Slabs Above Grade:
 - a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 - b. Piping NPS 6 and Larger: Steel pipe sleeves.
 - 5. Interior Partitions:

- a. Piping Smaller Than NPS 6: Steel pipe sleeves.
- b. Piping NPS 6 and Larger: Galvanized-steel sheet sleeves.

END OF SECTION 230517

SECTION 230518 - ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished brass finish and setscrew fastener.
- B. One-Piece, Stamped-Steel Type: With polished, chrome-plated finish and spring-clip fasteners.
- C. Split-Plate, Stamped-Steel Type: With polished, chrome-plated finish; concealed and exposed-rivet hinge; and spring-clip fasteners.

2.2 FLOOR PLATES

A. Split Floor Plates: Steel with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep pattern.
 - b. Insulated Piping: One-piece stamped steel or split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 - c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece cast brass with polished, chrome-plated finish.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece stamped steel or split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 - e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece cast brass with polished, chrome-plated finish.
 - f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece stamped steel or split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 - g. Bare Piping in Unfinished Service Spaces: One-piece cast brass with rough-brass finish.
 - h. Bare Piping in Unfinished Service Spaces: One-piece stamped steel or split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.
 - i. Bare Piping in Equipment Rooms: One-piece cast brass with rough-brass finish.
 - j. Bare Piping in Equipment Rooms: One-piece stamped steel or split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping: Split floor plate.

3.2 FIELD QUALITY CONTROL

A. Using new materials, replace broken and damaged escutcheons and floor plates.

END OF SECTION 230518

SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Thermal-hanger shield inserts.
 - 4. Fastener systems.
 - 5. Pipe stands.
 - 6. Equipment supports.
- B. Related Requirements:
 - 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 - 2. Section 230548.13 "Vibration Controls for HVAC" for vibration isolation devices.
 - 3. Section 233113 "Metal Ducts" for duct hangers and supports.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Pipe stands.
 - 3. Equipment supports.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Include design calculations for designing trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- 1.5 QUALITY ASSURANCE
 - A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.
- B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

2.2 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized, hot-dip galvanized, or electro-galvanized.
 - 3. Nonmetallic Coatings: Plastic coated, or epoxy powder-coated.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 PLASTIC PIPE HANGERS

- A. Description: Similar to MSS SP-58, Types 1 through 58, factory-fabricated steel pipe hanger except hanger is made of plastic.
- B. Hanger Rods: Continuous-thread rod, nuts, and washer made of galvanized steel.
- C. Flammability: ASTM D635, ASTM E84, and UL 94.

2.5 THERMAL-HANGER SHIELD INSERTS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Carpenter & Paterson, Inc.
 - 2. <u>Clement Support Services</u>.
 - 3. National Pipe Hanger Corporation.
 - 4. <u>Pipe Shields Inc.</u>
 - 5. <u>Piping Technology & Products, Inc</u>.
- B. Insulation-Insert Material for Cold Piping: ASTM C552, Type II cellular glass with 100-psi minimum compressive strength and vapor barrier.
- C. Insulation-Insert Material for Hot Piping: Water-repellent-treated, ASTM C533, Type I calcium silicate with 100-psi minimum compressive strength.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. Powder-actuated fasteners are not acceptable.Mechanical-Expansion Anchors: Insert-wedgetype anchors for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.7 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand:

- 1. Description: Single base unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
- 2. Base: Single, vulcanized rubber, molded polypropylene, or polycarbonate.
- 3. Hardware: Galvanized steel or polycarbonate.
- 4. Accessories: Protection pads.
- C. Low-Profile, Single Base, Single-Pipe Stand:
 - 1. Description: Single base with vertical and horizontal members, and pipe support, for roof installation without membrane protection.
 - 2. Base: Single, vulcanized rubber, molded polypropylene, or polycarbonate.
 - 3. Vertical Members: Two, galvanized-steel, continuous-thread 1/2-inch rods.
 - 4. Horizontal Member: Adjustable horizontal, galvanized-steel pipe support channels.
 - 5. Pipe Supports: Clevis hanger.
 - 6. Hardware: Galvanized steel.
 - 7. Accessories: Protection pads.
- D. High-Profile, Multiple-Pipe Stand:
 - 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 2. Bases: Two or more; molded polypropylene.
 - 3. Vertical Members: Two or more, protective-coated-steel channels.
 - 4. Horizontal Members: One or more, adjustable height, protective-coated-steel pipe support.
 - 5. Pipe Supports: Clevis hanger.

2.8 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.9 MATERIALS

- A. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; galvanized.
- B. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION

A. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A36/A36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- D. Fastener System Installation:
 - 1. Powder-actuated fasteners are not acceptable.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- E. Pipe Stand Installation:
 - 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
- F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- M. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 - 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 - 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Touchup: Comply with requirements in Section 099123 "Interior Painting" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports, and metal trapeze pipe hangers and attachments for general service applications.
- F. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- G. Use padded hangers for piping that is subject to scratching.
- H. Use thermal-hanger shield inserts for insulated piping and tubing.
- I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow offcenter closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.

- 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
- 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
- 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steelpipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steelpipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with Ubolt to retain pipe.
- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is unnecessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is unnecessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

- L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
 - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
 - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
 - 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.

- 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
- 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
- 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
- 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
- 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
- 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
- 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- O. Comply with MSS SP-58 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- Q. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 230529

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 230548.13 - VIBRATION CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Elastomeric isolation pads.
 - 2. Elastomeric hangers.
 - 3. Mechanical anchor bolts.
 - 4. Vibration isolation equipment bases.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device type required.
- B. Shop Drawings:
 - 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 - 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- C. Delegated-Design Submittal: For each vibration isolation device.
 - 1. Include design calculations for selecting vibration isolators and for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show coordination of vibration isolation device installation for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.
- B. Qualification Data: For testing agency.
- C. Welding certificates.
- D. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 ELASTOMERIC ISOLATION PADS

- A. Elastomeric Isolation Pads: .
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Ace Mountings Co., Inc</u>.
 - b. <u>California Dynamics Corporation</u>.
 - c. <u>Isolation Technology, Inc</u>.
 - d. <u>Kinetics Noise Control, Inc</u>.
 - e. <u>Mason Industries, Inc</u>.
 - f. <u>Vibration Eliminator Co., Inc</u>.
 - g. <u>Vibration Isolation</u>.
 - h. <u>Vibration Mountings & Controls, Inc</u>.
 - 2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
 - 3. Size: Factory or field cut to match requirements of supported equipment.
 - 4. Pad Material: Oil and water resistant with elastomeric properties.
 - 5. Surface Pattern: Smooth or ribbed pattern.
 - 6. Infused nonwoven cotton or synthetic fibers.
 - 7. Load-bearing metal plates adhered to pads.
 - 8. Sandwich-Core Material: Resilient and elastomeric.
 - a. Surface Pattern: Smooth or ribbed pattern.
 - b. Infused nonwoven cotton or synthetic fibers.

2.2 ELASTOMERIC HANGERS

- A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods: .
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Ace Mountings Co., Inc</u>.
 - b. <u>California Dynamics Corporation</u>.
 - c. <u>Isolation Technology, Inc</u>.
 - d. <u>Kinetics Noise Control, Inc</u>.
 - e. <u>Mason Industries, Inc</u>.
 - f. <u>Vibration Eliminator Co., Inc</u>.
 - g. <u>Vibration Mountings & Controls, Inc</u>.
 - 2. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 - 3. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.3 MECHANICAL ANCHOR BOLTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper B-Line, Inc.
 - 2. Hilti, Inc.
 - 3. Kinetics Noise Control, Inc.
 - 4. Mason Industries, Inc.
- B. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E488

2.4 VIBRATION ISOLATION EQUIPMENT BASES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>California Dynamics Corporation</u>.
 - 2. <u>Kinetics Noise Control, Inc</u>.
 - 3. <u>Mason Industries, Inc</u>.
 - 4. <u>Vibration Eliminator Co., Inc</u>.
 - 5. <u>Vibration Isolation</u>.
 - 6. <u>Vibration Mountings & Controls, Inc</u>.

- B. Steel Rails: Factory-fabricated, welded, structural-steel rails.
 - 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide rails.
 - a. Include supports for suction and discharge elbows for pumps.
 - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A36/A36M. Rails shall have shape to accommodate supported equipment.
 - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
- C. Steel Bases: Factory-fabricated, welded, structural-steel bases and rails.
 - 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 - a. Include supports for suction and discharge elbows for pumps.
 - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A36/A36M. Bases shall have shape to accommodate supported equipment.
 - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
- D. Concrete Inertia Base: Factory-fabricated or field-fabricated, welded, structural-steel bases and rails ready for placement of cast-in-place concrete.
 - 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 - a. Include supports for suction and discharge elbows for pumps.
 - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A36/A36M. Bases shall have shape to accommodate supported equipment.
 - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
 - 4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 VIBRATION CONTROL DEVICE INSTALLATION

- A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."
- B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.
- C. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- D. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- E. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- F. Drilled-in Anchors:
 - Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole

and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.

- 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 - 5. Test to 90 percent of rated proof load of device.
 - 6. Measure isolator restraint clearance.
 - 7. Measure isolator deflection.
 - 8. Verify snubber minimum clearances.
 - 9. Test and adjust restrained-air-spring isolator controls and safeties.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

3.5 VIBRATION ISOLATION EQUIPMENT BASES INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."

Fairfield County Auditor's Office Real Estate Department

END OF SECTION 230548.13

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Duct labels.
 - 5. Valve tags.
 - 6. Warning tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- C. Valve numbering scheme.
- D. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Material and Thickness: Brass, 0.032-inch stainless steel, 0.025-inch aluminum, 0.032inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

- 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- 4. Fasteners: Stainless-steel rivets or self-tapping screws.
- 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Black.
- C. Background Color: Red.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction according to ASME A13.1.

- B. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inch high.

2.4 DUCT LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Black.
- C. Background Color: Yellow.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: At least 1-1/2 inches high.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings; also include duct size and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.

2.5 VALVE TAGS

- A. Description: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass beaded chain.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room

or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS

- A. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.
 - 1. Size: Approximately 4 by 7 inches.
 - 2. Fasteners: Brass grommet and wire.
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Safety-yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Piping Color Coding: Painting of piping is specified in Section 099123 "Interior Painting."

- B. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- C. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.
- D. Pipe Label Color Schedule:
 - 1. Refrigerant Piping: White letters on a safety-purple background.

3.5 DUCT LABEL INSTALLATION

- A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 - 1. Blue: For supply ducts.
 - 2. Green: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
- B. Locate labels near points where ducts enter into and exit from concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.6 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Refrigerant: 2 inches, round.
 - b. Gas: 2 inches, round.

- 2. Valve-Tag Colors:
 - a. Potable and Other Water: White letters on a safety-green background.
 - b. Defined by User: White letters on a safety-purple background, black letters on a safety-white background, white letters on a safety-gray background, and white letters on a safety-black background

3.7 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 230553

SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.
 - 2. Testing, Adjusting, and Balancing Equipment:
 - a. Motors.
 - b. Heat-transfer coils.
 - 3. Duct leakage tests.
 - 4. Control system verification.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. BAS: Building automation systems.
- C. NEBB: National Environmental Balancing Bureau.
- D. TAB: Testing, adjusting, and balancing.
- E. TABB: Testing, Adjusting, and Balancing Bureau.
- F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
- G. TDH: Total dynamic head.

1.4 ACTION SUBMITTALS

A. Sustainable Design Submittals:

- 1. TAB Report: Documentation indicating that Work complies with ASHRAE/IES 90.1, Section 6.7.2.3 "System Balancing."
- 1.5 INFORMATIONAL SUBMITTALS
 - A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
 - B. Contract Documents Examination Report: Within 30 days of Contractor's Notice to Proceed, submit the Contract Documents review report as specified in Part 3.
 - C. Strategies and Procedures Plan: Within 30 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures as specified in "Preparation" Article.
 - D. Certified TAB reports.
 - E. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - 3. Application.
 - 4. Dates of use.
 - 5. Dates of calibration.

1.6 QUALITY ASSURANCE

- A. TAB Specialists Qualifications: Engage a TAB entity certified by AABC, NEBB, or TABB.
 - 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC, NEBB, or TABB.
 - 2. TAB Technician: Employee of the TAB specialist and certified by AABC, NEBB, or TABB as a TAB technician.
- B. Certify TAB field data reports and perform the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- C. TAB Report Forms: Use Standard TAB contractor's forms approved by Architect.
- D. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."
- E. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."

F. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.7.2.3 - "System Balancing."

1.7 COORDINATION

- A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times..
- B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.
- PART 2 PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.
- B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in

AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.
- J. Examine operating safety interlocks and controls on HVAC equipment.
- K. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 - 1. Airside:
 - a. Permanent electrical-power wiring is complete
 - b. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 - c. Duct systems are complete with terminals installed.
 - d. Volume, smoke, and fire dampers are open and functional.
 - e. Clean filters are installed.
 - f. Fans are operating, free of vibration, and rotating in correct direction.
 - g. Automatic temperature-control systems are operational.
 - h. Ceilings are installed.
 - i. Windows and doors are installed.
 - j. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance", ASHRAE 111, NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems", or SMACNA's "HVAC Systems Testing, Adjusting, and Balancing" and in this Section.
- B. Cut insulation, ducts, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

- 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
- 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
- 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- D. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaustair dampers through the supply-fan discharge and mixing dampers.
- E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- F. Verify that motor starters are equipped with properly sized thermal protection.
- G. Check dampers for proper position to achieve desired airflow path.
- H. Check for airflow blockages.
- I. Check condensate drains for proper connections and functioning.
- J. Check for proper sealing of air-handling-unit components.
- K. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

- 1. Measure total airflow.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 - b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 - c. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.
- 2. Measure fan static pressures as follows:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.
 - c. Measure static pressure across each component that makes up the air-handling system.
 - d. Report artificial loading of filters at the time static pressures are measured.
- 3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
- 4. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fanmotor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 - 1. Measure airflow of submain and branch ducts.
 - 2. Adjust submain and branch duct volume dampers for specified airflow.
 - 3. Re-measure each submain and branch duct after all have been adjusted.
- C. Adjust air inlets and outlets for each space to indicated airflows.
 - 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 - 2. Measure inlets and outlets airflow.
 - 3. Adjust each inlet and outlet for specified airflow.
 - 4. Re-measure each inlet and outlet after they have been adjusted.
- D. Verify final system conditions.

- 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
- 2. Re-measure and confirm that total airflow is within design.
- 3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
- 4. Mark all final settings.
- 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
- 6. Measure and record all operating data.
- 7. Record final fan-performance data.

3.6 PROCEDURES FOR MOTORS

- A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Phase and hertz.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter size and thermal-protection-element rating.
 - 8. Service factor and frame size.

3.7 PROCEDURES FOR CONDENSING UNITS

- A. Verify proper rotation of fans.
- B. Measure entering- and leaving-air temperatures.
- C. Record fan and motor operating data.

3.8 PROCEDURES FOR HEAT-TRANSFER COILS

- A. Measure, adjust, and record the following data for each refrigerant coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Wet-bulb temperature of entering and leaving air.
 - 3. Airflow.

3.9 DUCT LEAKAGE TESTS

- A. Witness the duct pressure testing performed by Installer.
- B. Verify that proper test methods are used and that leakage rates are within specified tolerances.

C. Report deficiencies observed.

3.10 CONTROLS VERIFICATION

- A. In conjunction with system balancing, perform the following:
 - 1. Verify temperature control system is operating within the design limitations.
 - 2. Confirm that the sequences of operation are in compliance with Contract Documents.
 - 3. Verify that controllers are calibrated and function as intended.
 - 4. Verify that controller set points are as indicated.
 - 5. Verify the operation of lockout or interlock systems.
 - 6. Verify the operation of valve and damper actuators.
 - 7. Verify that controlled devices are properly installed and connected to correct controller.
 - 8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
 - 9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.
- B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.11 TOLERANCES

- A. Set HVAC system's airflow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
 - 3. Heating-Water Flow Rate: Plus or minus 10 percent.
 - 4. Cooling-Water Flow Rate: Plus or minus 10 percent.
- B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.12 PROGRESS REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: Prepare weekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.13 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Fan curves.
 - 2. Manufacturers' test data.
 - 3. Field test reports prepared by system and equipment installers.
 - 4. Other information relative to equipment performance; do not include Shop Drawings and Product Data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB specialist.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.

- h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.
- E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches, and bore.
 - i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - j. Number, make, and size of belts.
 - k. Number, type, and size of filters.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Filter static-pressure differential in inches wg.
 - f. Preheat-coil static-pressure differential in inches wg.
 - g. Cooling-coil static-pressure differential in inches wg.
 - h. Heating-coil static-pressure differential in inches wg.

- i. Outdoor airflow in cfm.
- j. Return airflow in cfm.
- k. Outdoor-air damper position.
- I. Return-air damper position.
- m. Vortex damper position.
- F. Apparatus-Coil Test Reports:
 - 1. Coil Data:
 - a. System identification.
 - b. Location.
 - c. Coil type.
 - d. Number of rows.
 - e. Fin spacing in fins per inch o.c.
 - f. Make and model number.
 - g. Face area in sq. ft..
 - h. Tube size in NPS.
 - i. Tube and fin materials.
 - j. Circuiting arrangement.
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Average face velocity in fpm.
 - c. Air pressure drop in inches wg.
 - d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 - e. Return-air, wet- and dry-bulb temperatures in deg F.
 - f. Entering-air, wet- and dry-bulb temperatures in deg F.
 - g. Leaving-air, wet- and dry-bulb temperatures in deg F.
 - h. Refrigerant expansion valve and refrigerant types.
 - i. Refrigerant suction pressure in psig.
 - j. Refrigerant suction temperature in deg F.
- G. Gas- and Oil-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Fuel type in input data.
 - g. Output capacity in Btu/h.
 - h. Ignition type.
 - i. Burner-control types.

- j. Motor horsepower and rpm.
- k. Motor volts, phase, and hertz.
- I. Motor full-load amperage and service factor.
- m. Sheave make, size in inches, and bore.
- n. Center-to-center dimensions of sheave and amount of adjustments in inches.
- 2. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Entering-air temperature in deg F.
 - c. Leaving-air temperature in deg F.
 - d. Air temperature differential in deg F.
 - e. Entering-air static pressure in inches wg.
 - f. Leaving-air static pressure in inches wg.
 - g. Air static-pressure differential in inches wg.
 - h. Low-fire fuel input in Btu/h.
 - i. High-fire fuel input in Btu/h.
 - j. Manifold pressure in psig.
 - k. High-temperature-limit setting in deg F.
 - I. Operating set point in Btu/h.
 - m. Motor voltage at each connection.
 - n. Motor amperage for each phase.
 - o. Heating value of fuel in Btu/h.
- H. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F.
 - d. Duct static pressure in inches wg.
 - e. Duct size in inches.
 - f. Duct area in sq. ft..
 - g. Indicated airflow rate in cfm.
 - h. Indicated velocity in fpm.
 - i. Actual airflow rate in cfm.
 - j. Actual average velocity in fpm.
 - k. Barometric pressure in psig.
- I. Air-Terminal-Device Reports:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Apparatus used for test.

- d. Area served.
- e. Make.
- f. Number from system diagram.
- g. Type and model number.
- h. Size.
- i. Effective area in sq. ft..
- 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Air velocity in fpm.
 - c. Preliminary airflow rate as needed in cfm.
 - d. Preliminary velocity as needed in fpm.
 - e. Final airflow rate in cfm.
 - f. Final velocity in fpm.
 - g. Space temperature in deg F.
- J. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.14 VERIFICATION OF TAB REPORT

- A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of Owner.
- B. Owner shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
- C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- E. If TAB work fails, proceed as follows:
 - 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.

- 2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.
- 3. If the second verification also fails, Owner may contact AABC Headquarters regarding the AABC National Performance Guaranty.
- F. Prepare test and inspection reports.

3.15 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593

SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed and exposed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return air.
 - 4. Indoor, exposed return air.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 - 3. Detail application of field-applied jackets.
 - 4. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.
1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C871.

- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C553, Type II and ASTM C1290, Type II with factory-applied vinyl jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>CertainTeed Corporation</u>.
 - b. Johns Manville; a Berkshire Hathaway company.
 - c. <u>Knauf Insulation</u>.
 - d. <u>Owens Corning</u>.
- G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>CertainTeed Corporation</u>.
 - b. Johns Manville; a Berkshire Hathaway company.
 - c. <u>Knauf Insulation</u>.
 - d. <u>Owens Corning</u>.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-127.
 - b. <u>Eagle Bridges Marathon Industries</u>; CP-127.
 - c. Eagle Bridges Marathon Industries; 225.
 - d. <u>Foster Brand; H. B. Fuller Construction Products</u>; 85-60/85-70.
 - e. <u>Mon-Eco Industries, Inc</u>.; 22-25.
- C. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.

- 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-82.
 - b. <u>Eagle Bridges Marathon Industries</u>; 225.
 - c. <u>Foster Brand; H. B. Fuller Construction Products</u>; 85-50.
 - d. <u>Mon-Eco Industries, Inc</u>.; 22-25.

2.3 MASTICS AND COATINGS

- A. Materials shall be compatible with insulation materials, jackets, and substrates.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. Foster Brand; H. B. Fuller Construction Products; 30-80/30-90.
 - b. <u>Vimasco Corporation</u>; 749.
 - 2. Water-Vapor Permeance: Comply with ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness..
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; Encacel.
 - b. <u>Eagle Bridges Marathon Industries</u>; 570.
 - c. <u>Foster Brand; H. B. Fuller Construction Products</u>; 60-95/60-96.
 - 2. Water-Vapor Permeance: Comply with ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F.
 - 4. Color: White.
- D. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-10.
 - b. <u>Eagle Bridges Marathon Industries</u>; 550.
 - c. <u>Foster Brand; H. B. Fuller Construction Products</u>; 46-50.
 - d. <u>Mon-Eco Industries, Inc</u>.; 55-50.
 - e. <u>Vimasco Corporation</u>; WC-1/WC-5.

- 2. Water-Vapor Permeance: ASTM E96, greater than 1.0 perm at manufacturer's recommended dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F.
- 4. Color: White.

2.4 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-50 AHV2.
 - b. <u>Foster Brand; H. B. Fuller Construction Products</u>; 30-36.
 - c. <u>Vimasco Corporation</u>; 713 and 714.
 - 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fireresistant lagging cloths over duct insulation.
 - 3. Service Temperature Range: 0 to plus 180 deg F.
 - 4. Color: White.

2.5 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-76.
 - b. <u>Eagle Bridges Marathon Industries</u>; CP-76.
 - c. Eagle Bridges Marathon Industries; 405.
 - d. <u>Foster Brand; H. B. Fuller Construction Products</u>; 95-44.
 - e. <u>Mon-Eco Industries, Inc</u>.; 44-05.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.
- B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 - 1. <u>Products:</u> Subject to compliance with requirements, provide the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.

5. Color: White.

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
 - 2. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.

2.7 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C921, Type I, unless otherwise indicated.
- B. Self-Adhesive Outdoor Jacket: 60-mil-thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with stucco-embossed aluminum-foil facing.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Polyguard Products, Inc</u>.
 - b. VentureGuard.
 - c. Or Approved Equal.

2.8 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - b. <u>Compac Corporation</u>; 104 and 105.
 - c. <u>Venture Tape</u>; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C1136.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Avery Dennison Corporation, Specialty Tapes Division</u>; Fasson 0827.
 - b. <u>Compac Corporation</u>; 110 and 111.
 - c. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Avery Dennison Corporation, Specialty Tapes Division</u>; Fasson 0800.
 - b. <u>Compac Corporation</u>; 120.
 - c. <u>Venture Tape</u>; 3520 CW.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch in width.

2.9 SECUREMENTS

- A. Bands:
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>ITW Insulation Systems; Illinois Tool Works, Inc</u>.; Gerrard Strapping and Seals.
 - b. <u>RPR Products, Inc</u>.; Insul-Mate Strapping, Seals, and Springs.
 - 2. Stainless Steel: ASTM A167 or ASTM A240/A240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.
 - 3. Aluminum: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
 - 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:

- 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 - a. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc; CWP-1.
 - 2) <u>Gemco</u>; CD.
 - 3) Midwest Fasteners, Inc; CD.
 - 4) <u>Nelson Stud Welding</u>; TPA, TPC, and TPS.
- 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - a. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc; CHP-1.
 - 2) <u>Gemco;</u> Cupped Head Weld Pin.
 - 3) <u>Midwest Fasteners, Inc</u>; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
- 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - 1) <u>AGM Industries, Inc</u>; Tactoo Perforated Base Insul-Hangers.
 - 2) <u>Gemco</u>; Perforated Base.
 - 3) <u>Midwest Fasteners, Inc</u>; Spindle.
 - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - c. Spindle: Copper- or zinc-coated, low-carbon steel or Aluminum, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 4. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - 1) <u>AGM Industries, Inc</u>; Tactoo Self-Adhering Insul-Hangers.
 - 2) <u>Gemco</u>; Peel & Press.

- 3) <u>Midwest Fasteners, Inc</u>; Self Stick.
- b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
- c. Spindle: Copper- or zinc-coated, low-carbon steel or Aluminum, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
- d. Adhesive-backed base with a peel-off protective cover.
- 5. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel or aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - 1) <u>AGM Industries, Inc</u>; RC-150.
 - 2) <u>Gemco</u>; R-150.
 - 3) Midwest Fasteners, Inc; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.
- D. Wire: 0.080-inch nickel-copper alloy, or 0.062-inch soft-annealed, galvanized steel.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>C & F Wire</u>.
 - b. Or Approved Equal.

2.10 CORNER ANGLES

A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D1784, Class 16354-C. White or color-coded to match adjacent surface.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.

- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

A. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

3.5 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.

- f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.

- e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.6 FIELD-APPLIED JACKET INSTALLATION

A. Install per manufacturer recommendation.

3.7 FINISHES

- A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.
- 3.9 DUCT INSULATION SCHEDULE, GENERAL
 - A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return air.
 - 4. Indoor, exposed return air.
 - B. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 3. Factory-insulated flexible ducts.
 - 4. Factory-insulated plenums and casings.
 - 5. Flexible connectors.
 - 6. Vibration-control devices.
 - 7. Factory-insulated access panels and doors.

3.10 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, round and flat-oval, supply, return, and outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
- B. Concealed, rectangular, supply, return, and outdoor-air duct insulation shall be the following:

- 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
- C. Exposed, round and flat-oval, supply, return, and outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
- D. Exposed, rectangular, supply, return, and outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.

END OF SECTION 230713

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following HVAC piping systems:
 - 1. Condensate drain piping, indoors and outdoors.
 - 2. Refrigerant suction and hot-gas piping, indoors and outdoors.
- B. Related Sections:
 - 1. Section 230713 "Duct Insulation."
 - 2. Section 230716 "HVAC Equipment Insulation."

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at pipe expansion joints for each type of insulation.
 - 3. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 4. Detail removable insulation at piping specialties.
 - 5. Detail application of field-applied jackets.
 - 6. Detail application at linkages of control devices.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use.
 - 1. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C795.
- E. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C534, Type I for tubular materials.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Aeroflex USA, Inc</u>.
 - b. <u>Armacell LLC</u>.
 - c. <u>K-Flex USA</u>.
- F. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Johns Manville; a Berkshire Hathaway company.
 - b. Knauf Insulation.
 - c. <u>Manson Insulation Inc</u>.
 - d. <u>Owens Corning</u>.

- 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- 3. Type II, 1200 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C547, Type II, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- G. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C534 or ASTM C1427, Type I, Grade 1 for tubular materials and Type II, Grade 1 for sheet materials.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Aeroflex USA, Inc</u>.; Aeroseal.
 - b. <u>Armacell LLC</u>; Armaflex 520 Adhesive.
 - c. Foster Brand; H. B. Fuller Construction Products; 85-75.
 - d. <u>K-Flex USA</u>; K-FLEX 373 Contact Adhesive.
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-127.
 - b. Foster Brand; H. B. Fuller Construction Products; 85-60/85-70.
 - c. <u>Mon-Eco Industries, Inc</u>.; 22-25.
- D. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-82.
 - b. <u>Foster Brand; H. B. Fuller Construction Products</u>; 85-50.
 - c. <u>Mon-Eco Industries, Inc</u>.; 22-25.

2.3 MASTICS AND COATINGS

- A. Materials shall be compatible with insulation materials, jackets, and substrates.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.

- 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Foster Brand; H. B. Fuller Construction Products</u>; 30-80/30-90.
 - b. <u>Vimasco Corporation</u>; 749.
- 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F.
- 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
- 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products; Encacel.
 - b. <u>Foster Brand; H. B. Fuller Construction Products</u>; 60-95/60-96.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F.
 - 4. Color: White.
- D. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-10.
 - b. <u>Foster Brand; H. B. Fuller Construction Products</u>; 46-50.
 - c. <u>Mon-Eco Industries, Inc</u>.; 55-50.
 - d. <u>Vimasco Corporation</u>; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Color: White.

2.4 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-50 AHV2.
 - b. Foster Brand; H. B. Fuller Construction Products; 30-36.
 - c. <u>Vimasco Corporation</u>; 713 and 714.
 - 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fireresistant lagging cloths over pipe insulation.

- 3. Service Temperature Range: 0 to plus 180 deg F.
- 4. Color: White.

2.5 SEALANTS

- A. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. <u>Products:</u> Subject to compliance with requirements, provide the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.

2.7 FIELD-APPLIED JACKETS

- A. Self-Adhesive Outdoor Jacket: 60-mil-thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a cross-laminated polyethylene film covered with white aluminum-foil facing.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Polyguard Products, Inc</u>.; Alumaguard 60.
 - b. Or approved equal.

2.8 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Avery Dennison Corporation, Specialty Tapes Division</u>; Fasson 0836.

- b. Compac Corporation; 104 and 105.
- c. <u>Ideal Tape Co., Inc., an American Biltrite Company</u>; Ideal Tape Cold Seal 728 ASJ.
- 2. Width: 3 inches.
- 3. Thickness: 11.5 mils.
- 4. Adhesion: 90 ounces force/inch in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch in width.
- 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.9 SECUREMENTS

- A. Bands:
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>ITW Insulation Systems; Illinois Tool Works, Inc</u>.; Gerrard Strapping and Seals.
 - b. <u>RPR Products, Inc</u>.; Insul-Mate Strapping, Seals, and Springs.
 - c. Or approved equal.
 - 2. Stainless Steel: ASTM A167 or ASTM A240/A240M, Type 304 or Type 316; 0.015 inch thick, 3/4 inch wide with wing seal or closed seal.
 - 3. Aluminum: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal or closed seal.
 - 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Wire: 0.062-inch soft-annealed, galvanized steel.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>C & F Wire</u>.
 - b. Or approved equal.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

Fairfield County Auditor's Office

Real Estate Department

L.

1. Draw jacket tight and smooth.

Install insulation with factory-applied jackets as follows:

- 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at [2 inches] [4 inches] o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.

3.4 PENETRATIONS

- A. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.

- B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- C. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.

- 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.8 FINISHES

- A. Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099123 " Painting."
 - 1. Flat Acrylic Finish: **[Two]** finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three

locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.
- 3.10 PIPING INSULATION SCHEDULE, GENERAL
 - A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
 - B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.
- 3.11 INDOOR PIPING INSULATION SCHEDULE
 - A. Condensate and Equipment Drain Water below 60 Deg F:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 1 inch thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 - B. Refrigerant Suction and Hot-Gas Flexible Tubing:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 1 inch thick.
 - b. Polyolefin: 1 inch thick.

3.12 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Refrigerant Suction and Hot-Gas Piping:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 2 inches thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

3.13 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Exposed:
 - 1. Aluminum, Smooth: 0.016 inch thick.
 - 2. Stainless Steel, Type 304 or 316, Smooth 2B Finish: 0.010 inch thick.

END OF SECTION 230719

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 231123 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipes, tubes, and fittings.
 - 2. Piping specialties.
 - 3. Piping and tubing joining materials.
 - 4. Manual gas shutoff valves.
 - 5. Pressure regulators.
 - 6. Dielectric fittings.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Piping specialties.
 - 2. Corrugated, stainless-steel tubing with associated components.
 - 3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
 - 4. Pressure regulators. Indicate pressure ratings and capacities.
 - 5. Dielectric fittings.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.
- B. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.
- C. Qualification Data: For qualified professional engineer.
- D. Welding certificates.
- E. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pressure regulators to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.
- B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

1.9 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

- B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of naturalgas service.
 - 2. Do not proceed with interruption of natural-gas service without Construction Manager's written permission.

1.10 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided.
- B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Section 083113 "Access Doors and Frames."

PART 2 - PRODUCTS

- 2.1 PERFORMANCE REQUIREMENTS
 - A. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 - 2. Service Regulators: 65 psig minimum unless otherwise indicated.
 - 3. Minimum Operating Pressure of Service Meter: 5 psig.
 - B. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 0.5 psig but not more than 2 psig, and is reduced to secondary pressure of 0.5 psig or less.

2.2 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A53/A53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Wrought-Steel Welding Fittings: ASTM A234/A234M for butt welding and socket welding.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
 - 4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - a. Material Group: 1.1.
 - b. End Connections: Threaded or butt welding to match pipe.

- c. Lapped Face: Not permitted underground.
- d. Gasket Materials: ASME B16.20, metallic, flat, asbestos free, aluminum o-rings, and spiral-wound metal gaskets.
- e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.
- 5. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 - a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.
- 6. Mechanical Couplings:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Dresser Piping Specialties.
 - 2) <u>Smith-Blair, Inc.</u>
 - 3) <u>Victaulic Company.</u>
 - b. Steel flanges and tube with epoxy finish.
 - c. Buna-nitrile seals.
 - d. Steel bolts, washers, and nuts.
 - e. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 - f. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.
- 2.3 PIPING SPECIALTIES
 - A. Appliance Flexible Connectors:
 - 1. Indoor, Fixed-Appliance Flexible Connectors: Comply with ANSI Z21.24.
 - 2. Corrugated stainless-steel tubing with polymer coating.
 - 3. Operating-Pressure Rating: 0.5 psig.
 - 4. End Fittings: Zinc-coated steel.
 - 5. Threaded Ends: Comply with ASME B1.20.1.
 - 6. Maximum Length: 72 inches
 - B. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 - 1. Copper-alloy convenience outlet and matching plug connector.
 - 2. Nitrile seals.
 - 3. Hand operated with automatic shutoff when disconnected.
 - 4. For indoor or outdoor applications.
 - 5. Adjustable, retractable restraining cable.
 - C. Y-Pattern Strainers:

- 1. Body: ASTM A126, Class B, cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
- 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. CWP Rating: 125 psig.
- D. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.4 JOINING MATERIALS

- A. Joint Compound and Tape: Suitable for natural gas.
- B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.5 MANUAL GAS SHUTOFF VALVES

- A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig.
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 - 5. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.
- C. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.
 - 1. CWP Rating: 125 psig.
 - 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 - 3. Service Mark: Initials "WOG" shall be permanently marked on valve body.
- D. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.
 - 1. Manufacturer: Subject to compliance with requirements, provide products by ond of the following:
- a. A.Y McDonald Mfg. Co.
- b. BrassCraft Manufacturing Co.; a Masco company.
- c. Conbraco Industries, Inc.
- d. Lyall, R. W. & Company, Inc.
- e. Perfection Corporation.
- 2. Body: Bronze, complying with ASTM B584.
- 3. Ball: Chrome-plated brass.
- 4. Stem: Bronze; blowout proof.
- 5. Seats: Reinforced TFE; blowout proof.
- 6. Packing: Separate packnut with adjustable-stem packing threaded ends.
- 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 8. CWP Rating: 600 psig.
- 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- E. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. Manufacturer: Subject to compliance with requirements, provide products by ond of the following:
 - a. A.Y McDonald Mfg. Co.
 - b. BrassCraft Manufacturing Co.; a Masco company.
 - c. Conbraco Industries, Inc.
 - d. Lyall, R. W. & Company, Inc.
 - e. Perfection Corporation.
 - 2. Body: Bronze, complying with ASTM B584.
 - 3. Ball: Chrome-plated bronze.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 8. CWP Rating: 600 psig.
 - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- F. Cast-Iron, Nonlubricated Plug Valves: MSS SP-78.
 - 1. Manufacturer: Subject to compliance with requirements, provide products by ond of the following:
 - a. A.Y McDonald Mfg. Co.
 - b. Mueller Co.

- c. Xomox Corporation.
- 2. Body: Cast iron, complying with ASTM A126, Class B.
- 3. Plug: Bronze or nickel-plated cast iron.
- 4. Seat: Coated with thermoplastic.
- 5. Stem Seal: Compatible with natural gas.
- 6. Ends: Threaded or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 7. Operator: Square head or lug type with tamperproof feature where indicated.
- 8. Pressure Class: 125 psig.
- 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- G. Valve Boxes:
 - 1. Cast-iron, two-section box.
 - 2. Top section with cover with "GAS" lettering.
 - 3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
 - 4. Adjustable cast-iron extensions of length required for depth of bury.
 - 5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.
- 2.6 PRESSURE REGULATORS
 - A. General Requirements:
 - 1. Single stage and suitable for natural gas.
 - 2. Steel jacket and corrosion-resistant components.
 - 3. Elevation compensator.
 - 4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.
 - B. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 - 1. Manufacturer: Subject to compliance with requirements, provide products by ond of the following:
 - a. Canadian Meter Company Inc.
 - b. Eaton.
 - c. Harper Wyman Co.
 - d. Maxitrol Company.
 - e. SCP, Inc.
 - 2. Body and Diaphragm Case: Die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber.

- 6. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
- 7. Factory-Applied Finish: Minimum three-layer polyester and polyurethane paint finish.
- 8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.
- 9. Maximum Inlet Pressure: 2 psig.

2.7 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Manufacturer: Subject to compliance with requirements, provide products by ond of the following:
 - a. A.Y. McDonald Mfg. Co.
 - b. Capitol Manufacturing Company.
 - c. Central Plastics Company.
 - d. HART Industrial Unions, LLC.
 - e. Jomar Valve.
 - f. Matco-Norca.
 - g. Watts; a Watts Water Technologies company.
 - h. Wilkins.
 - i. Zurn Industries, LLC. Eaton.
 - 2. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 125 psig minimum at 180 deg F.
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges:
 - 1. Manufacturer: Subject to compliance with requirements, provide products by ond of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Matco-Norca.
 - d. Watts; a Watts Water Technologies company.
 - e. Wilkins.
 - 2. Description:
 - a. Standard: ASSE 1079.
 - b. Factory-fabricated, bolted, companion-flange assembly.

- c. Pressure Rating: 125 psig minimum at 180 deg F.
- d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
- D. Dielectric-Flange Insulating Kits:
 - 1. Manufacturer: Subject to compliance with requirements, provide products by ond of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Description:
 - a. Nonconducting materials for field assembly of companion flanges.
 - b. Pressure Rating: 150 psig.
 - c. Gasket: Neoprene or phenolic.
 - d. Bolt Sleeves: Phenolic or polyethylene.
 - e. Washers: Phenolic with steel backing washers.
- 2.8 LABELING AND IDENTIFYING
 - A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
- B. Inspect natural-gas piping according to the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.

C. Comply with the International Fuel Gas Code requirements for prevention of accidental ignition.

3.3 OUTDOOR PIPING INSTALLATION

- A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.
 - 1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.
- C. Steel Piping with Protective Coating:
 - 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 - 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 - 3. Replace pipe having damaged PE coating with new pipe.
- D. Install fittings for changes in direction and branch connections.
- E. Install pressure gage downstream from each service regulator. Pressure gages are specified in Section 230519 "Meters and Gages for HVAC Piping."

3.4 INDOOR PIPING INSTALLATION

- A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access.

- H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.
- K. Verify final equipment locations for roughing-in.
- L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
- O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- P. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.
 - 1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
 - 2. In Floors: Install natural-gas piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.
 - 3. In Floor Channels: Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.
 - 4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 - a. Exception: Tubing passing through partitions or walls does not require striker barriers.
 - 5. Prohibited Locations:

- a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
- b. Do not install natural-gas piping in solid walls or partitions.
- Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- R. Connect branch piping from top or side of horizontal piping.
- S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.
- T. Do not use natural-gas piping as grounding electrode.
- U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
- V. Install pressure gage upstream and downstream from each line regulator. Pressure gages are specified in Section 220519 "Meters and Gages for Plumbing Piping."
- W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.5 VALVE INSTALLATION

- A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.
- B. Install underground valves with valve boxes.
- C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

3.6 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

- C. Threaded Joints:
 - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 - 2. Cut threads full and clean using sharp dies.
 - 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 - 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 - 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints:
 - 1. Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators.
 - 2. Bevel plain ends of steel pipe.
 - 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.
- E. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.
- F. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

3.7 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
 - 5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

3.8 CONNECTIONS

- A. Connect to utility's gas main according to utility's procedures and requirements.
- B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
- C. Install piping adjacent to appliances to allow service and maintenance of appliances.

- Connect piping to appliances using manual gas shutoff valves and unions. Install valve within
 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
- E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.9 LABELING AND IDENTIFYING

- A. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for piping and valve identification.
- B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.10 PAINTING

- A. Comply with requirements in Section 099123 "Painting" for painting interior and exterior natural-gas piping.
- B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Alkyd System: MPI EXT 5.1D.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Intermediate Coat: Exterior alkyd enamel matching topcoat.
 - c. Topcoat: Exterior alkyd enamel (flat).
 - d. Color: Match with exterior wall color.
- C. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Alkyd System: MPI INT 5.1E.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Intermediate Coat: Interior alkyd matching topcoat.
 - c. Topcoat: Interior alkyd (flat).
 - d. Color: Yellow.
- D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.

- B. Tests and Inspections:
 - 1. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.
- C. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- 3.12 OUTDOOR PIPING SCHEDULE
 - A. Underground natural-gas piping shall be the following:
 - 1. Steel pipe with wrought-steel fittings and welded joints, or mechanical couplings. Coat pipe and fittings with protective coating for steel piping.
 - B. Aboveground natural-gas piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.
 - C. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
- 3.13 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG
 - A. Aboveground, branch piping NPS 1 and smaller shall be the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - B. Aboveground, distribution piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.
- 3.14 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 0.5 PSIG AND LESS THAN 5 PSIG
 - A. Aboveground, branch piping NPS 1 and smaller shall be the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - B. Aboveground, distribution piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with steel welding fittings and welded joints.

3.15 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.
- B. Valves for pipe sizes NPS 2-1/2 and larger at service meter shall be one of the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
 - 2. Bronze plug valve.
 - 3. Cast-iron, nonlubricated plug valve.
- C. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.
- D. Distribution piping valves for pipe sizes NPS 2-1/2 and larger shall be one of the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
 - 2. Bronze plug valve.
 - 3. Cast-iron, nonlubricated plug valve.
- E. Valves in branch piping for single appliance shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.

END OF SECTION 231123

SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Single-wall round ducts and fittings.
 - 3. Sheet metal materials.
 - 4. Sealants and gaskets.
 - 5. Hangers and supports.
- B. Related Sections:
 - 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, ductmounting access doors and panels, turning vanes, and flexible ducts.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.
- B. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Factory- and shop-fabricated ducts and fittings.
 - 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 - 4. Elevation of bottom of ducts.
 - 5. Fittings.
 - 6. Reinforcement and spacing.
 - 7. Seam and joint construction.
 - 8. Penetrations through fire-rated and other partitions.

- 9. Equipment installation based on equipment being used on Project.
- 10. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
- 11. Hangers and supports, including methods for duct and building attachment and vibration isolation.
- 12.

.

- C. Delegated-Design Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.
 - 5.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Items penetrating finished ceiling including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
- B. Welding certificates.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel in accordance with the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
 - 3. AWS D9.1/D9.1M, "Sheet Metal Welding Code," for duct joint and seam welding.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and with performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible".
- C. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.
- D. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment," and Section 7 "Construction and System Startup."
- E. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.4.4 "HVAC System Construction and Insulation."
- F. Duct Dimensions: Unless otherwise indicated, all duct dimensions indicated on Drawings are inside clear dimensions and do not include insulation or duct wall thickness.

2.2 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Fabricate joints in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for staticpressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SINGLE-WALL ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Ch. 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Ductmate Industries, Inc</u>.
 - b. <u>Linx Industries (formerly Lindab)</u>.
 - c. <u>McGill AirFlow LLC</u>.
 - d. <u>SEMCO LLC</u>.
 - e. <u>Sheet Metal Connectors, Inc</u>.
 - f. <u>Spiral Manufacturing Co., Inc</u>.
- B. Transverse Joints: Select joint types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Tees and Laterals: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.4 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A653/A653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

- C. Stainless-Steel Sheets: Comply with ASTM A480/A480M, Type 304 or 316, as indicated in "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in "Duct Schedule" Article.
- D. Reinforcement Shapes and Plates: ASTM A36/A36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- E. Tie Rods: Galvanized steel, 1/4-inch- minimum diameter for lengths 36 inches or less; 3/8-inchminimum diameter for lengths longer than 36 inches.

2.5 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested in accordance with UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 3 inches.
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10 inch wg, positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 - 10.
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10 inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

- D. Solvent-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Base: Synthetic rubber resin.
 - 3. Solvent: Toluene and heptane.
 - 4. Solids Content: Minimum 60 percent.
 - 5. Shore A Hardness: Minimum 60.
 - 6. Water resistant.
 - 7. Mold and mildew resistant.
 - 8. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
 - 9. Service: Indoor or outdoor.
 - 10. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- E. Flanged Joint Sealant: Comply with ASTM C920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
 - 6.
- F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- G. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Galvanized-steel rods and nuts.
- B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- C. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A603.
- D. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A492.
- E. Steel Cable End Connections: Galvanized-steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

- F. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- G. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and coordination drawings.
- B. Install ducts in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install ducts in maximum practical lengths with fewest possible joints.
- D. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- E. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- G. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- H. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- I. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- J. Install dampers and all other duct-mounted accessories in air ducts where indicated on Drawings.

- K. Protect duct interiors from moisture, construction debris and dust, and other foreign materials both before and after installation. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."
- L. Elbows: Use long-radius elbows wherever they fit.
 - 1. Fabricate 90-degree rectangular mitered elbows to include turning vanes.
 - 2. Fabricate 90-degree round elbows with a minimum of three segments for 12 inches and smaller and a minimum of five segments for 14 inches and larger.

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts at a minimum to the following seal classes in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
 - 3. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
 - 4. Unconditioned Space, Exhaust Ducts: Seal Class C.
 - 5. Unconditioned Space, Return-Air Ducts: Seal Class B.
 - 6. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.

- 7. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
- 8. Conditioned Space, Exhaust Ducts: Seal Class B.
- 9. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Powder-actuated concrete fasteners are not permitted.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING

Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer.
 Paint materials and application requirements are specified in Section 099123 "Painting."

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Duct system will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.8 STARTUP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.9 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:
 - 1. Fabricate all ducts to achieve SMACNA pressure class, seal class, and leakage class as indicated below.
- B. Supply Ducts:
 - 1. Ducts Connected to Furnaces:
 - a. Pressure Class: Positive **1**inch wg (Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 2.
 - d. SMACNA Leakage Class for Round and Flat Oval: 2.
- C. Return Or Outdoor Air Ducts:
 - 1. Ducts Connected to Furnaces:
 - a. Pressure Class: Positive or negative **1**inch wg (Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 2.
 - d. SMACNA Leakage Class for Round and Flat Oval: 2.
- D. Exhaust Ducts:
 - 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative1 2-inch wg.
 - b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 240 and 6 if positive pressure.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12 and 3 if positive pressure.
- E. Intermediate Reinforcement:

- 1. Galvanized-Steel Ducts: Galvanized steel.
- F. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 - c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 - 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 - 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.

- 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
- 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
- 4) Radius-to Diameter Ratio: 1.5.
- b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
- c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.
- G. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Conical spin in.
 - 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113

SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Backdraft and pressure relief dampers.
 - 2. Manual volume dampers.
 - 3. Flange connectors.
 - 4. Turning vanes.
 - 5. Duct-mounted access doors.
 - 6. Flexible connectors.
 - 7. Duct accessory hardware.
- B. Related Requirements:
 - 1. Section 233346 "Flexible Ducts" for insulated and non-insulated flexible ducts.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.
- B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 - d. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
- B. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A653/A653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- C. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>American Warming and Ventilating; a Mestek Architectural Group company</u>.
 - 2. <u>Cesco Products; a division of MESTEK, Inc</u>.
 - 3. <u>Greenheck Fan Corporation</u>.
 - 4. <u>Nailor Industries Inc</u>.
 - 5. NCA Manufacturing, Inc.
 - 6. <u>Pottorff</u>.
 - 7. <u>Ruskin Company</u>.
 - 8. <u>United Enertech</u>.
- B. Description: Gravity balanced.
- C. Maximum Air Velocity: 2000 fpm.
- D. Maximum System Pressure: 2-inch wg.
- E. Frame: Hat-shaped, 0.05-inch- thick, galvanized sheet steel, with welded corners or mechanically attached and mounting flange.
- F. Blades: Multiple single-piece blades, center pivoted, maximum 6-inch width, 0.025-inch- thick, roll-formed aluminum with sealed edges.
- G. Blade Action: Parallel.
- H. Blade Seals: Neoprene, mechanically locked.
- I. Blade Axles:
 - 1. Material: Galvanized steel.
 - 2. Diameter: 0.20 inch.
- J. Tie Bars and Brackets: Galvanized steel.
- K. Return Spring: Adjustable tension.
- L. Bearings: Steel ball or synthetic pivot bushings.
- M. Accessories:
 - 1. Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. Electric actuators.
 - 4. Chain pulls.
 - 5. Screen Mounting: Front mounted in sleeve.

- a. Sleeve Thickness: 20 gage minimum.
- b. Sleeve Length: 6 inches minimum.
- 6. Screen Mounting: Rear mounted.
- 7. Screen Material: Galvanized steel.
- 8. Screen Type: Insect.
- 9. 90-degree stops.

2.4 MANUAL VOLUME DAMPERS

- A. Low-Leakage, Steel, Manual Volume Dampers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. American Warming and Ventilating; a Mestek Architectural Group company.
 - b. <u>McGill AirFlow LLC</u>.
 - c. <u>Nailor Industries Inc</u>.
 - d. <u>Pottorff</u>.
 - e. <u>Ruskin Company</u>.
 - f. <u>United Enertech</u>.
 - 2. Comply with AMCA 500-D testing for damper rating.
 - 3. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
 - 4. Suitable for horizontal or vertical applications.
 - 5. Frames:
 - a. Hat shaped.
 - b. 0.094-inch- thick, galvanized sheet steel.
 - c. Mitered and welded corners.
 - d. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 6. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized, roll-formed steel, 0.064 inch thick.
 - 7. Blade Axles: Galvanized steel.
 - 8. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 9. Blade Seals: Neoprene.

- 10. Jamb Seals: Cambered aluminum.
- 11. Tie Bars and Brackets: Galvanized steel.
- 12. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- B. Jackshaft:
 - 1. Size: 0.5-inch diameter.
 - 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- C. Damper Hardware:
 - 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch- thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
 - 2. Include center hole to suit damper operating-rod size.
 - 3. Include elevated platform for insulated duct mounting.

2.5 FLANGE CONNECTORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Ductmate Industries, Inc</u>.
 - 2. <u>Nexus PDQ</u>.
 - 3. Ward Industries; a brand of Hart & Cooley, Inc.
- B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.
- D. Gage and Shape: Match connecting ductwork.

2.6 TURNING VANES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Ductmate Industries, Inc</u>.
 - 2. <u>Duro Dyne Inc</u>.
 - 3. <u>Elgen Manufacturing</u>.
 - 4. METALAIRE, Inc.

- 5. <u>SEMCO LLC</u>.
- 6. <u>Ward Industries; a brand of Hart & Cooley, Inc</u>.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- D. Vane Construction: Single wall.

2.7 DUCT-MOUNTED ACCESS DOORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. American Warming and Ventilating; a Mestek Architectural Group company.
 - 2. <u>Ductmate Industries, Inc</u>.
 - 3. Flexmaster U.S.A., Inc.
 - 4. <u>Greenheck Fan Corporation</u>.
 - 5. McGill AirFlow LLC.
 - 6. <u>Nailor Industries Inc</u>.
 - 7. <u>Pottorff</u>.
 - 8. <u>Ventfabrics, Inc</u>.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 7-2, "Duct Access Doors and Panels," and 7-3, "Access Doors Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inchbutt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 - c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches.

d. Access Doors Larger Than 24 by 48 Inches: Continuous and two compression latches with outside and inside handles.

2.8 FLEXIBLE CONNECTORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Ductmate Industries, Inc</u>.
 - 2. <u>Duro Dyne Inc</u>.
 - 3. <u>Elgen Manufacturing</u>.
 - 4. <u>Ventfabrics, Inc</u>.
 - 5. <u>Ward Industries; a brand of Hart & Cooley, Inc</u>.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch- thick aluminum sheets. Provide metal compatible with connected ducts.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd..
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.
- F. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 - 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 - 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.9 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Compliance with ASHRAE/IESNA 90.1-2004 includes Section 6.4.3.3.3 "Shutoff Damper Controls," restricts the use of backdraft dampers, and requires control dampers for certain applications. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Upstream from duct filters.
 - 3. At outdoor-air intakes and mixed-air plenums.
 - 4. At drain pans and seals.
 - 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.

- 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
- 7. At each change in direction and at maximum 50-foot spacing.
- 8. Upstream or downstream from turning vanes.
- 9. Control devices requiring inspection.
- 10. Elsewhere as indicated.
- H. Install access doors with swing against duct static pressure.
- I. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: 25 by 14 inches.
 - 6. Body plus Ladder Access: 25 by 17 inches.
- J. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- K. Install flexible connectors to connect ducts to equipment.
- L. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- M. Connect diffusers to ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place.
- N. Connect flexible ducts to metal ducts with adhesive plus sheet metal screws.
- O. Install duct test holes where required for testing and balancing purposes.
- P. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.
- 3.2 FIELD QUALITY CONTROL
 - A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.

- 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
- 4. Inspect turning vanes for proper and secure installation.
- 5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 233300

SECTION 233346 - FLEXIBLE DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:1. Insulated flexible ducts.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- C. Comply with the Air Diffusion Council's "ADC Flexible Air Duct Test Code FD 72-R1."
- D. Comply with ASTM E96/E96M, "Test Methods for Water Vapor Transmission of Materials."

2.2 INSULATED FLEXIBLE DUCTS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Flexmaster U.S.A., Inc</u>.
 - 2. <u>McGill AirFlow LLC</u>.
 - 3. <u>Thermaflex; a Flex-Tek Group company</u>.

- 4. <u>Ward Industries; a brand of Hart & Cooley, Inc</u>.
- B. Insulated, Flexible Duct: UL 181, Class 1, two-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 10 to plus 160 deg F.
 - 4. Insulation R-Value: R6.
- C. Insulated, Flexible Duct: UL 181, Class 1, black polymer film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.
 - 1. Pressure Rating: 4-inch wg positive and 0.5-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 20 to plus 175 deg F.
 - 4. Insulation R-Value: R6.

2.3 FLEXIBLE DUCT CONNECTORS

A. Clamps: Nylon strap in sizes 3 through 18 inches, to suit duct size.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install flexible ducts according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install in indoor applications only. Flexible ductwork should not be exposed to UV lighting.
- C. Connect terminal units to supply ducts with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.
- D. Connect diffusers to ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place.
- E. Connect flexible ducts to metal ducts with adhesive plus sheet metal screws.
- F. Install duct test holes where required for testing and balancing purposes.
- G. Installation:
 - 1. Install ducts fully extended.
 - 2. Do not bend ducts across sharp corners.
 - 3. Bends of flexible ducting shall not exceed a minimum of one duct diameter.

- 4. Avoid contact with metal fixtures, water lines, pipes, or conduits.
- 5. Install flexible ducts in a direct line, without sags, twists, or turns.
- H. Supporting Flexible Ducts:
 - 1. Suspend flexible ducts with bands 1-1/2 inches wide or wider and spaced a maximum of 48 inches apart. Maximum centerline sag between supports shall not exceed 1/2 inch per 12 inches.
 - 2. Install extra supports at bends placed approximately one duct diameter from center line of the bend.
 - 3. Ducts may rest on ceiling joists or truss supports. Spacing between supports shall not exceed the maximum spacing per manufacturer's written installation instructions.
 - 4. Vertically installed ducts shall be stabilized by support straps at a maximum of 72 inches o.c.

END OF SECTION 233346
THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 233423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Ceiling-mounted ventilators.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
 - 6. Fan speed controllers.
- B. Shop Drawings:
 - 1. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Size and location of initial access modules for acoustical tile.
 - 2. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For HVAC power ventilators to include in normal and emergency operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Characteristics:
 - 1. Damper: Backdraft.
 - 2. Motor Enclosure: Totally enclosed, fan cooled.
 - 3. Accessories: Roof jack, and wall cap.

2.2 CEILING-MOUNTED VENTILATORS

- A. Housing: Steel, lined with acoustical insulation.
- B. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel removable for service.
- C. Back-draft damper: Integral.
- D. Grille: Plastic, louvered grille with flange on intake and thumbscrew or spring retainer attachment to fan housing.
- E. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.
- F. Accessories:
 - 1. Variable-Frequency Motor Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Manual Starter Switch: Single-pole rocker switch assembly with cover and pilot light.
 - 3. Isolation: Rubber-in-shear vibration isolators.
 - 4. Manufacturer's standard roof jack or wall cap, and transition fittings.

2.3 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.4 SOURCE QUALITY CONTROL

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- B. AMCA Certification: Fans shall comply with AMCA 11 and bear the AMCA-Certified Ratings Seal.
- C. Fan Sound Ratings: Comply with AMCA 311, and label fans with the AMCA-Certified Ratings Seal. Sound ratings shall comply with AMCA 301. The fans shall be tested according to AMCA 300.
- D. Fan Performance Ratings: Comply with AMCA 211 and label fans with AMCA-Certified Rating Seal. The fans shall be tested for air performance flow rate, fan pressure, power, fan efficiency, air density, speed of rotation, and fan efficiency according to AMCA 210/ASHRAE 51.
- E. Operating Limits: Classify according to AMCA 99.
- F. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

PART 3 - EXECUTION

3.1 INSTALLATION OF HVAC POWER VENTILATORS

- A. Install power ventilators level and plumb.
- B. Equipment Mounting:
 - 1. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."
- C. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
- D. Support suspended units from structure using threaded steel rods and elastomeric hangers having a static deflection of 1 inch. Vibration-control devices are specified in Section 230548.13 "Vibration Controls for HVAC."

- E. Install units with clearances for service and maintenance.
- F. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 DUCTWORK CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections with the assistance of a factory-authorized service representative.
- B. Tests and Inspections:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that there is adequate maintenance and access space.
 - 4. Verify that cleaning and adjusting are complete.
 - 5. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 6. Adjust belt tension.
 - 7. Adjust damper linkages for proper damper operation.
 - 8. Verify lubrication for bearings and other moving parts.
 - 9. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 - 10. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 - 11. Shut unit down and reconnect automatic temperature-control operators.
 - 12. Remove and replace malfunctioning units and retest as specified above.
- C. Test and adjust controls and safeties. Controls and equipment will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

- B. Adjust belt tension.
- C. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.
- E. Lubricate bearings.

END OF SECTION 233423

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 233713.13 - AIR DIFFUSERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Rectangular and square ceiling diffusers.
 - 2. Linear slot diffusers.
- B. Related Requirements:
 - 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers.
 - 2. Section 233713.23 "Air Registers and Grilles" for adjustable-bar register and grilles, fixed-face registers and grilles, and linear bar grilles.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Ceiling suspension assembly members.
 - 2. Method of attaching hangers to building structure.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 - 5. Duct access panels.

B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 RECTANGULAR AND SQUARE CEILING DIFFUSERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Carnes Company</u>.
 - 2. <u>Hart & Cooley Inc</u>.
 - 3. <u>Krueger</u>.
 - 4. METALAIRE, Inc.
 - 5. <u>Nailor Industries Inc</u>.
 - 6. <u>Price Industries</u>.
 - 7. <u>Titus</u>.
- B. See schedule on drawings for characteristics.

2.2 LINEAR SLOT DIFFUSERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Carnes Company</u>.
 - 2. <u>Hart & Cooley Inc</u>.
 - 3. <u>Kees, Inc</u>.
 - 4. Krueger.
 - 5. <u>METALAIRE, Inc</u>.
 - 6. <u>Nailor Industries Inc</u>.
 - 7. <u>Price Industries</u>.
 - 8. <u>Titus</u>.
- B. See schedule on drawings for characteristics.

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas where diffusers are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install diffusers level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713.13

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 233713.23 - REGISTERS AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fixed face registers and grilles.
- B. Related Requirements:
 - 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to registers and grilles.
 - 2. Section 233713.13 "Air Diffusers" for various types of air diffusers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Register and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Ceiling suspension assembly members.
 - 2. Method of attaching hangers to building structure.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 - 5. Duct access panels.
- B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 REGISTERS

- A. Fixed Face Register:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Carnes Company</u>.
 - b. <u>Hart & Cooley Inc</u>.
 - c. <u>Kees, Inc</u>.
 - d. <u>Krueger</u>.
 - e. <u>Nailor Industries Inc</u>.
 - f. <u>Price Industries</u>.
 - g. <u>Titus</u>.
 - 2. Material: Steel.
 - 3. Finish: Baked enamel, white.
 - 4. Face Blade Arrangement: Horizontal and vertical; spaced 3/4 inch apart.
 - 5. Face Arrangement: Perforated core.
 - 6. Frame: 1-1/4 inches wide.

2.2 GRILLES

- A. Fixed Face Grille:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Carnes Company</u>.
 - b. <u>Hart & Cooley Inc</u>.
 - c. <u>Kees, Inc</u>.
 - d. <u>Krueger</u>.
 - e. <u>Nailor Industries Inc</u>.
 - f. <u>Price Industries</u>.
 - g. <u>Titus</u>.
 - 2. Material: Steel.
 - 3. Finish: Baked enamel, white.
 - 4. Face Blade Arrangement: Horizontal 45°; spaced 3/4 inch apart.
 - 5. Face Arrangement: Perforated core.
 - 6. Frame: 1-1/4 inches wide.
- B. Eggcrate Grille:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Carnes.
 - b. Hart & Cooley Inc.
 - c. KEES
 - d. Krueger.
 - e. Nailor Industries Inc.
 - f. Price Industries.
 - g. Titus.
- 2. See schedule on drawings for characteristics.

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate registers and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas where registers and grilles are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install registers and grilles level and plumb.
- B. Outlets and Inlets Locations: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install registers and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust registers and grilles to air patterns indicated, or as directed, before starting air balancing.

Fairfield County Auditor's Office Real Estate Department

END OF SECTION 233713.23

SECTION 235416.13 - GAS-FIRED FURNACES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Gas-fired, condensing furnaces and accessories complete with controls.
 - 2. Air filters.
 - 3. Refrigeration components.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings:
 - 1. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For each furnace to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

- a. Furnace and accessories complete with controls.
- b. Air filter.
- c. Refrigeration components.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Disposable Air Filters: Furnish two complete sets.

1.7 QUALITY ASSURANCE

- A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- B. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- C. Comply with NFPA 70.

1.8 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace the following components of furnaces that fail in materials or workmanship within specified warranty period:
 - 1. Warranty Period, Commencing on Date of Substantial Completion:
 - a. Furnace Heat Exchanger: 10 years.
 - b. Integrated Ignition and Blower Control Circuit Board: Five years.
 - c. Refrigeration Compressors: 10 years.
 - d. Evaporator and Condenser Coils: Five years.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a qualified testing agency, and marked for intended location and application.

2.2 GAS-FIRED FURNACES, CONDENSING

A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

- 1. Bryant Heating & Cooling Systems; a unit of United Technologies Corp.
- 2. <u>Carrier Corporation; a unit of United Technologies Corp</u>.
- 3. <u>Comfort-Aire; a division of Heat Controller, Inc</u>.
- 4. <u>Goodman Manufacturing Company, L.P.</u>
- 5. <u>Heil Heating & Cooling Products; an International Comfort Products brand; a unit of United Technologies Corp</u>.
- 6. <u>Lennox Industries, Inc.; Lennox International</u>.
- 7. Rheem Manufacturing Company; Heating and Cooling Products.
- 8. <u>Trane</u>.
- 9. <u>YORK; a Johnson Controls company</u>.
- B. Cabinet: Steel.
 - 1. Cabinet interior around heat exchanger shall be factory-installed insulation.
 - 2. Lift-out panels shall expose burners and all other items requiring access for maintenance.
 - 3. Factory paint external cabinets in manufacturer's standard color.
 - 4. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- C. Fan: Centrifugal, factory balanced, resilient mounted, direct drive.
 - 1. Fan Motors: Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 2. Special Motor Features: Single speed, premium efficiency, as defined in Section 230513 "Common Motor Requirements for HVAC Equipment," and with internal thermal protection and permanent lubrication.
 - 3. Special Motor Features: Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - 4. Special Motor Features: Electronically controlled motor (ECM) controlled by integrated furnace/blower control.
- D. Type of Gas: Natural.
- E. Heat Exchanger:
 - 1. Primary: Aluminized steel.
 - 2. Secondary: Stainless steel.
- F. Burner:
 - 1. Gas Valve: 100 percent safety two-stage main gas valve, main shutoff valve, pressure regulator, safety pilot with electronic flame sensor, limit control, transformer, and combination ignition/fan timer control board.
 - 2. Ignition: Electric pilot ignition, with hot-surface igniter or electric spark ignition.
- G. Gas-Burner Safety Controls:

- 1. Electronic Flame Sensor: Prevents gas valve from opening until pilot flame is proven; stops gas flow on ignition failure.
- 2. Flame Rollout Switch: Installed on burner box; prevents burner operation.
- 3. Limit Control: Fixed stop at maximum permissible setting; de-energizes burner on excessive bonnet temperature; automatic reset.
- H. Combustion-Air Inducer: Centrifugal fan with thermally protected motor and sleeve bearings prepurges heat exchanger and vents combustion products; pressure switch prevents furnace operation if combustion-air inlet or flue outlet is blocked.
- I. Furnace Controls: Solid-state board integrates ignition, heat, cooling, and fan speeds; adjustable fan-on and fan-off timing; terminals for connection to accessories.
- J. Accessories:
 - 1. Combination Combustion-Air Intake and Vent: PVC plastic fitting to combine combustion-air inlet and vent through outside wall or roof.
 - 2. PVC Plastic Vent Materials:
 - a. PVC Plastic Pipe: Schedule 40, complying with ASTM D1785.
 - b. PVC Plastic Fittings: Schedule 40, complying with ASTM D2466, socket type.
 - c. PVC Solvent Cement: ASTM D2564.
- K. See schedule on drawings for characteristics.

2.3 THERMOSTATS

- A. Control Wiring: Balanced twisted-pair cabling.
 - 1. Description: Shielded twisted pairs (FTP), No. 22 AWG, 100 ohm, four pair.
 - 2. Cable Jacket Color: Blue.

2.4 AIR FILTERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Filtrete Home Filtration Products; a 3M brand</u>.
 - 2. Or approved equal.
- B. Disposable Filters: 1-inch- thick fiberglass media in sheet metal frame.

2.5 REFRIGERATION COMPONENTS

A. General Refrigeration Component Requirements:

- 1. Refrigeration compressor, coils, and specialties shall be designed to operate with CFCfree refrigerants.
- 2. Energy Efficiency: Equal to or greater than prescribed by ASHRAE/IES 90.1.
- B. Refrigerant Coil: Copper tubes mechanically expanded into aluminum fins. Comply with AHRI 210/240. Match size with furnace. Include condensate drain pan with accessible drain outlet complying with ASHRAE 62.1.
 - 1. Refrigerant Coil Enclosure: Steel, matching furnace and evaporator coil, with access panel and flanges for integral mounting at or on furnace cabinet and galvanized sheet metal drain pan coated with black asphaltic base paint.
- C. Refrigerant Line Kits: Annealed-copper suction and liquid lines factory cleaned, dried, pressurized with nitrogen, sealed, and with suction line insulated. Provide in standard lengths for installation without joints, except at equipment connections.
 - 1. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C534/C534M, Type I, 1/2 inch thick.
- D. Air-Cooled Compressor-Condenser Unit:
 - 1. Casing: Steel, finished with baked enamel, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
 - 2. Compressor: Hermetically sealed scroll type.
 - a. Crankcase heater.
 - b. Vibration isolation mounts for compressor.
 - c. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - d. Two-speed compressor motors shall have manual-reset high-pressure switch and automatic-reset low-pressure switch.
 - e. Refrigerant: R-410A.
 - 3. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with liquid subcooler.
 - 4. Fan: Aluminum-propeller type, directly connected to motor.
 - 5. Motor: Permanently lubricated, with integral thermal-overload protection.
 - 6. Low Ambient Kit: Permits operation down to 45 deg F.
 - 7. Mounting Base: Polyethylene.
- E. See schedule on drawings for characteristics.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine factory-installed insulation before furnace installation. Reject units that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for gas and refrigerant piping systems to verify actual locations of piping connections before equipment installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install gas-fired furnaces and associated fuel and vent features and systems according to NFPA 54.
- B. Base-Mounted Units: Secure units to substrate. Provide optional bottom closure base if required by installation conditions.
- C. Controls: Install thermostats and humidistats at mounting height of 60 inches above floor.
- D. Wiring Method: Install control wiring in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal control wiring except in unfinished spaces.
- E. Install ground-mounted, compressor-condenser components on 4-inch-thick, reinforced concrete base; 4 inches larger on each side than unit. Concrete, reinforcement, and formwork are specified in Section 033000 "Cast-in-Place Concrete." Coordinate anchor installation with concrete base.

3.3 CONNECTIONS

- A. Gas piping installation requirements are specified in Section 231123 "Facility Natural-Gas Piping." Drawings indicate general arrangement of piping, fittings, and specialties. Connect gas piping with union or flange and appliance connector valve.
- B. Install piping adjacent to equipment to allow service and maintenance.
- C. Vent and Outside-Air Connection, Condensing, Gas-Fired Furnaces: Connect plastic piping vent material to furnace connections and extend outdoors. Terminate vent outdoors with a cap and in an arrangement that will protect against entry of birds, insects, and dirt.
 - 1. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

- 2. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- 3. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - a. Comply with ASTM F402 for safe-handling practice of cleaners, primers, and solvent cements.
 - b. PVC Pressure Piping: Join schedule number ASTM D1785 PVC pipe and PVC socket fittings according to ASTM D2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D2855.
- 4. Slope pipe vent back to furnace or to outside terminal.
- D. Connect ducts to furnace with flexible connector. Comply with requirements in Section 233300 "Air Duct Accessories."
- E. Connect refrigerant tubing kits to refrigerant coil in furnace and to air-cooled compressorcondenser unit.
 - 1. Flared Joints: Use ASME B16.26 fitting and flared ends, following procedures in CDA's "Copper Tube Handbook."
 - 2. Soldered Joints: Apply ASTM B813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B32.
 - 3. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Perform electrical test and visual and mechanical inspection.
 - 2. Leak Test: After installation, charge systems with refrigerant and test for leaks. Repair leaks, replace lost refrigerant, and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation, product capability, and compliance with requirements.
 - 4. Verify that fan wheel is rotating in the correct direction and is not vibrating or binding.
 - 5. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.

3.5 STARTUP SERVICE

- A. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - 1. Inspect for physical damage to unit casings.
 - 2. Verify that access doors move freely and are weathertight.
 - 3. Clean units and inspect for construction debris.
 - 4. Verify that all bolts and screws are tight.
 - 5. Adjust vibration isolation and flexible connections.
 - 6. Verify that controls are connected and operational.
- B. Adjust fan belts to proper alignment and tension.
- C. Start unit according to manufacturer's written instructions and complete manufacturer's operational checklist.
- D. Measure and record airflows.
- E. Verify proper operation of capacity control device.
- F. After startup and performance test, lubricate bearings.

3.6 ADJUSTING

- A. Adjust initial temperature set points.
- B. Set controls, burner, and other adjustments for optimum heating performance and efficiency. Adjust heat-distribution features, including shutters, dampers, and relays, to provide optimum heating performance and system efficiency.

3.7 CLEANING

- A. After completing installation, clean furnaces internally according to manufacturer's written instructions.
- B. Install new filters in each furnace within 14 days after Substantial Completion.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain condensing units. Refer to Section 017900 "Demonstration and Training."

END OF SECTION 235416.13

SECTION 238126 - SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance:

- 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
- ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - " Procedures," and Section 7 -"Construction and System Start-up."
- C. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1.

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork are specified in Section 033000 "Cast-in-Place Concrete."

1.8 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period:
 - a. For Compressor: Five year(s) from date of Substantial Completion.
 - b. For Parts: Five year(s) from date of Substantial Completion.
 - c. For Labor: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Carrier Corporation; a unit of United Technologies Corp.</u>
 - 2. <u>Lennox Industries, Inc.; Lennox International</u>.
 - 3. <u>Mitsubishi Electric & Electronics USA, Inc</u>.
 - 4. Samsung HVAC.
 - 5. <u>SANYO North America Corporation</u>.
 - 6. <u>Trane</u>.
 - 7. <u>YORK; a Johnson Controls company</u>.

2.2 INDOOR UNITS (5 TONS OR LESS)

A. Wall-Mounted, Evaporator-Fan Components:

- 1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
- 2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermalexpansion valve. Comply with ARI 206/110.
- 3. Electric Coil: Helical, nickel-chrome, resistance-wire heating elements; with refractory ceramic support bushings, automatic-reset thermal cutout, built-in magnetic contactors, manual-reset thermal cutout, airflow proving device, and one-time fuses in terminal box for overcurrent protection.
- 4. Fan: Direct drive, centrifugal.
- 5. Fan Motors:
 - a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - c. Enclosure Type: Totally enclosed, fan cooled.
 - d. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 - e. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
 - f. Mount unit-mounted disconnect switches on exterior of unit.
- 6. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- 7. Condensate Drain Pans:
 - a. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 - 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 - 2) Depth: A minimum of 1 inch deep.
 - b. Single-wall, galvanized-steel sheet.
 - c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 - 1) Minimum Connection Size: NPS 1.
 - d. Pan-Top Surface Coating: Asphaltic waterproofing compound.
- 8. Air Filtration Section:
 - a. General Requirements for Air Filtration Section:
 - 1) Comply with NFPA 90A.
 - 2) Minimum MERV according to ASHRAE 52.2.

- 3) Filter-Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.
- b. Disposable Panel Filters:
 - 1) Factory-fabricated, viscous-coated, flat-panel type.
 - 2) Thickness: 1 inch.
 - 3) MERV according to ASHRAE 52.2: 5.
 - 4) Media: Interlaced glass fibers sprayed with nonflammable adhesive.
 - 5) Frame: Galvanized steel, with metal grid on outlet side, steel rod grid on inlet side, and hinged; with pull and retaining handles.

2.3 OUTDOOR UNITS (5 TONS OR LESS)

- A. Air-Cooled, Compressor-Condenser Components:
 - 1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
 - 2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - a. Compressor Type: Scroll.
 - b. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
 - c. Refrigerant: R-410A.
 - d. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 206/110.
 - 3. Heat-Pump Components: Reversing valve and low-temperature-air cutoff thermostat.
 - 4. Fan: Aluminum-propeller type, directly connected to motor.
 - 5. Motor: Permanently lubricated, with integral thermal-overload protection.
 - 6. Low Ambient Kit: Permits operation down to 45 deg F.
 - 7. Mounting Base: Polyethylene.

2.4 ACCESSORIES

- A. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:
 - 1. Compressor time delay.
 - 2. 24-hour time control of system stop and start.
 - 3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 - 4. Fan-speed selection including auto setting.

- B. Automatic-reset timer to prevent rapid cycling of compressor.
- C. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.
- D. Drain Hose: For condensate.1. Monitor air distribution static pressure and ventilation air volumes.

2.5 CAPACITIES AND CHARACTERISTICS

A. See schedule on drawings for characteristics.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units level and plumb.
- B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- C. Equipment Mounting:
 - 1. Install ground-mounted, compressor-condenser components on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
 - 2. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."
- D. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.

- C. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

3.4 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 238126

SECTION 238236 - FINNED-TUBE RADIATION HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes electric, baseboard radiation heaters.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and details.
 - 2. Indicate location and size of each field connection.
 - 3. Indicate location and arrangement of integral controls.
 - 4. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Structural members, including wall construction, to which finned-tube radiation heaters will be attached.
 - 2. Method of attaching finned-tube radiation heaters to building structure.
- B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 ELECTRIC BASEBOARD RADIATION HEATERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Berko; Marley Engineered Products</u>.
 - 2. Marley Engineered Products.
 - 3. <u>QMark; Marley Engineered Products</u>.
- B. Description: Factory-packaged units constructed according to UL 499, UL 1030, and UL 2021.
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Heating Elements: Nickel-chromium-wire heating element enclosed in metallic sheath mechanically bonded to fins, with high-temperature cutout and sensor running the full length of the element. Element supports shall eliminate thermal expansion noise.
 - 1. Volts: 208.
 - 2. Phase: 1.
 - 3. Hertz: 60.
- D. Enclosures: Minimum 0.0329-inch-thick steel, removable front cover.
 - 1. Full-height back.
 - 2. Full-length damper.
 - 3. End panel.
 - 4. Plastic end caps.
 - 5. Inside and outside corners.
 - 6. Joiner pieces to snap together.
 - 7. Finish: Baked-enamel finish in manufacturer's standard color as selected by Architect.
 - 8. Element Brackets: Primed and painted steel to support front panel and element.
- E. Unit Controls: Integral line-voltage thermostat.
- F. Accessories:
 - 1. Filler sections without a heating element matching the adjacent enclosure.
 - 2. Straight-blade-type receptacles complying with DSCC W-C-596G/GEN, NEMA WD 1, NEMA WD 6, and UL 498; in color selected by Architect.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive finned-tube radiation heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for electrical connections to verify actual locations before installation of finned-tube radiation heaters.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 BASEBOARD RADIATION HEATER INSTALLATION

- A. Install units level and plumb.
- B. Install enclosure continuously around corners, using outside and inside corner fittings.
- C. Join sections with splice plates and filler pieces to provide continuous enclosure.
- D. Install access doors for access to valves.
- E. Install enclosure continuously from wall to wall.
- F. Terminate enclosures with manufacturer's end caps except where enclosures are indicated to extend to adjoining walls.
- G. Install valves within reach of access door provided in enclosure.
- H. Install air-seal gasket between wall and recessed flanges or front cover of fully recessed unit.
- I. Install piping within pedestals for freestanding units.

3.3 CONNECTIONS

- A. Ground electric finned-tube radiation heaters according to Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.

- 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Units will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

END OF SECTION 238236

SECTION 238239.19 - WALL AND CEILING UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes wall and ceiling heaters with propeller fans and electric-resistance heating coils.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include details of anchorages and attachments to structure and to supported equipment.
 - 4. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.
 - 5. Wiring Diagrams: Power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wall and ceiling unit heaters to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Berko; Marley Engineered Products</u>.
 - 2. Marley Engineered Products.
 - 3. <u>QMark; Marley Engineered Products</u>.

2.2 DESCRIPTION

- A. Assembly including chassis, electric heating coil, fan, motor, and controls. Comply with UL 2021.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 CABINET

- A. Front Panel: Stamped-steel louver, with removable panels fastened with tamperproof fasteners.
- B. Finish: Baked enamel over baked-on primer with manufacturer's standard color selected by Architect, applied to factory-assembled and -tested wall and ceiling heaters before shipping.
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- D. Surface-Mounted Cabinet Enclosure: Steel with finish to match cabinet.

2.4 COIL

A. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and 60-Hz hum, embedded in magnesium oxide refractory and sealed in corrosion-resistant metallic sheath. Terminate elements in stainless-steel, machine-staked terminals secured with stainless-steel hardware, and limit controls for high-temperature protection. Provide integral circuit breaker for overcurrent protection.

2.5 FAN AND MOTOR

- A. Fan: Aluminum propeller directly connected to motor.
- B. Motor: Permanently lubricated. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."

2.6 CONTROLS

- A. Controls: Unit-mounted thermostat.
- B. Electrical Connection: Factory wire motors and controls for a single field connection with disconnect switch.
- 2.7 CAPACITIES AND CHARACTERISTICS

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive wall and ceiling unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for electrical connections to verify actual locations before unit-heater installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install wall and ceiling unit heaters to comply with NFPA 90A.
- B. Install wall and ceiling unit heaters level and plumb.
- C. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.
- D. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- E. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

END OF SECTION 238239.19
THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Belden Inc.
 - 2. Cerro Wire LLC.
 - 3. Cooper Industries, Inc.
 - 4. Encore Wire Corporation.
 - 5. General Cable; General Cable Corporation.
 - 6. Southwire Company.
 - 7. Thomas & Betts Corporation; A Member of the ABB Group.
- B. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
- C. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN-2 and Type XHHW-2.
- D. Multiconductor Cable: Comply with NEMA WC 70/ICEA S-95-658 for metal-clad cable, Type MC with ground wire.

2.2 CONNECTORS AND SPLICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. 3M.
 - 2. AFC Cable Systems; a part of Atkore International.
 - 3. Hubbell Power Systems, Inc.
 - 4. Ideal Industries, Inc.
 - 5. ILSCO.
 - 6. NSi Industries LLC.
 - 7. O-Z/Gedney; a brand of Emerson Industrial Automation.
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.
- 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
 - A. Service Entrance: Type THHN/THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.
 - B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.
 - C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
 - D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.

- E. Exposed Branch Circuits, Including in Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.
- G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.
- H. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainlesssteel, wire-mesh, strain relief device at terminations to suit application.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 - 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches of slack.

3.5 IDENTIFICATION

- A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors and conductors feeding the following critical equipment and services for compliance with requirements.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- B. Test and Inspection Reports: Prepare a written report to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- C. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 260519

Fairfield County Auditor's Office Real Estate Department

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes grounding and bonding systems and equipment.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 - 1. Test wells.
 - 2. Ground rods.
 - 3. Ground rings.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 - 2) Include recommended testing intervals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Burndy; Part of Hubbell Electrical Systems.
 - 2. ERICO International Corporation.
 - 3. Harger Lightning & Grounding.
 - 4. ILSCO.
 - 5. O-Z/Gedney; a brand of Emerson Industrial Automation.
 - 6. SIEMENS Industry, Inc.; Energy Management Division.
 - 7. Thomas & Betts Corporation; A Member of the ABB Group.

2.2 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.3 CONDUCTORS

- A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

- 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
- C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- D. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel, sectional type; 3/4 inch by 10 feet.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare copper conductor, No. 1/0 AWG minimum.
 - 1. Bury at least 30 inches below grade.
- C. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

- D. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.

3.4 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to ductmounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

3.5 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.

- 2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.
- C. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes shall be at least 12 inches deep, with cover.
 - 1. Test Wells: Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.
- D. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.
- E. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 - 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- F. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.
 - 1. Bury ground ring not less than 24 inches from building's foundation.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:

- 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
- 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
- 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
- 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 - 2. Panelboards Serving Electronic Equipment: 1 ohm(s).
 - 3. Pad-Mounted Equipment: 5 ohms.
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Engineer promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 - a. Hangers.
 - b. Steel slotted support systems.
 - c. Nonmetallic support systems.
 - d. Trapeze hangers.
 - 2. Include rated capacities and furnished specialties and accessories.
- B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.
 - 1. Trapeze hangers. Include product data for components.
 - 2. Steel slotted-channel systems.
 - 3. Equipment supports.
 - 4. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- C. Welding certificates.

1.4 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
- B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit; a part of Atkore International.
 - b. B-line, an Eaton business.
 - c. ERICO International Corporation.
 - d. GS Metals Corp.
 - e. Thomas & Betts Corporation; A Member of the ABB Group.
 - f. Unistrut; Part of Atkore International.
 - g. Wesanco, Inc.
 - Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA 4.
 - 3. Channel Dimensions: Selected for applicable load criteria.
- B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.
- D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.
- E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

- 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Hilti, Inc.
 - 2) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) Simpson Strong-Tie Co., Inc.
- 2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) B-line, an Eaton business.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - 3) Hilti, Inc.
 - 4) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - 5) MKT Fastening, LLC.
- 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.
- B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, and RMCs as scheduled in NECA 1, where its Table 1 lists maximum spacings that are less than those stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 - 5. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.
 - 6. To Light Steel: Sheet metal screws.

- 7. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.
- D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
- C. Anchor equipment to concrete base as follows:
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

- B. Touchup: Comply with requirements in Section 099113 "Exterior Painting" Section 099123 "Interior Painting" and Section 099600 "High-Performance Coatings" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529

SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Metal conduits, tubing, and fittings.
 - 2. Nonmetal conduits, tubing, and fittings.
 - 3. Surface raceways.
 - 4. Boxes, enclosures, and cabinets.

1.3 DEFINITIONS

- A. GRC: Galvanized rigid steel conduit.
- B. EMT: Electrical Metallic Tubing.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems; a part of Atkore International.
 - 2. Allied Tube & Conduit; a part of Atkore International.
 - 3. Anamet Electrical, Inc.
 - 4. Electri-Flex Company.

- 5. O-Z/Gedney; a brand of Emerson Industrial Automation.
- 6. Perma-Cote.
- 7. Picoma Industries, Inc.
- 8. Republic Conduit.
- 9. Southwire Company.
- 10. Thomas & Betts Corporation; A Member of the ABB Group.
- 11. Western Tube and Conduit Corporation.
- 12. Wheatland Tube Company.
- B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. GRC: Comply with ANSI C80.1 and UL 6.
- D. IMC: Comply with ANSI C80.6 and UL 1242.
- E. EMT: Comply with ANSI C80.3 and UL 797.
- F. FMC: Comply with UL 1; zinc-coated steel.
- G. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 - 1. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: compression.
 - 2. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
- I. Joint Compound for GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. AFC Cable Systems; a part of Atkore International.
 - 2. Anamet Electrical, Inc.
 - 3. Arnco Corporation.

- 4. CANTEX INC.
- 5. CertainTeed Corporation.
- 6. Electri-Flex Company.
- 7. Kraloy.
- 8. Lamson & Sessions.
- 9. Niedax Inc.
- 10. RACO; Hubbell.
- 11. Thomas & Betts Corporation; A Member of the ABB Group.
- B. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
- D. LFNC: Comply with UL 1660.
- E. Fittings for RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.
- F. Fittings for LFNC: Comply with UL 514B.

2.3 BOXES, ENCLOSURES, AND CABINETS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Adalet.
 - 2. Crouse-Hinds, an Eaton business.
 - 3. EGS/Appleton Electric.
 - 4. Erickson Electrical Equipment Company.
 - 5. FSR Inc.
 - 6. Hoffman; a brand of Pentair Equipment Protection.
 - 7. Hubbell Incorporated.
 - 8. Kraloy.
 - 9. Milbank Manufacturing Co.
 - 10. MonoSystems, Inc.
 - 11. Oldcastle Enclosure Solutions.
 - 12. O-Z/Gedney; a brand of Emerson Industrial Automation.
 - 13. RACO; Hubbell.
 - 14. Spring City Electrical Manufacturing Company.
 - 15. Thomas & Betts Corporation; A Member of the ABB Group.
 - 16. Wiremold / Legrand.
- B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- E. Metal Floor Boxes:
 - 1. Material: Cast metal or sheet metal.
 - 2. Type: Fully adjustable.
 - 3. Shape: Rectangular.
 - 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- F. Nonmetallic Floor Boxes: Nonadjustable, round.
 - 1. Listing and Labeling: Nonmetallic floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- G. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
- H. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb.
 - 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- I. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- J. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.
- K. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- L. Device Box Dimensions: 4 inches by 2-1/8 inches by 2-1/8 inches deep.
- M. Gangable boxes are prohibited.
- N. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures: Fiberglass.

- 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
- O. Cabinets:
 - 1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.
 - 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC.
 - 2. Concealed Conduit, Aboveground: RNC, Type EPC-40-PVC.
 - 3. Underground Conduit: RNC, Type EPC-40-PVC.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 - a. Mechanical rooms.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 6. Damp or Wet Locations: GRC.
 - 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch trade size.

- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. EMT: Use compression, cast-metal fittings. Comply with NEMA FB 2.10.
 - 3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- E. Do not install aluminum boxes, or fittings in contact with concrete or earth.
- F. Install surface raceways only where indicated on Drawings.

3.2 INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- C. Complete raceway installation before starting conductor installation.
- D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- E. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- F. Install no more than the equivalent of four 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- H. Support conduit within 12 inches of enclosures to which attached.
- I. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-footintervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.

- 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
- 5. Change to GRC before rising above floor.
- J. Stub-ups to Above Recessed Ceilings:
 - 1. Use EMT, or RMC for raceways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- L. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- M. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- N. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- O. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- P. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- Q. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
- R. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where an underground service raceway enters a building or structure.
 - 3. Where otherwise required by NFPA 70.

- S. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- T. Expansion-Joint Fittings:
 - 1. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
 - 2. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- U. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- V. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- W. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- X. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- Y. Locate boxes so that cover or plate will not span different building finishes.
- Z. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- AA. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- BB. Set metal floor boxes level and flush with finished floor surface.
- CC. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

END OF SECTION 260533

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 260543 - UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings, including GRC steel conduit.
 - 2. Rigid nonmetallic duct.
 - 3. Duct accessories.
 - 4. Polymer concrete handholes and boxes with polymer concrete cover.

1.3 DEFINITIONS

- A. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.
- B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.
- C. GRC: Galvanized rigid (steel) conduit.
- D. Traffic-ways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include duct, conduits, and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
 - 2. Include accessories for handholes.
 - 3. Include underground-line warning tape.
- B. Shop Drawings:
 - 1. Factory-Fabricated Handholes:

- a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
- b. Include duct entry provisions, including locations and duct sizes.
- c. Include cover design.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: For duct and duct bank. Show duct profiles and coordination with other utilities and underground structures.
- B. Source quality-control reports.
- C. Field quality-control reports.

1.6 FIELD CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Construction Manager no fewer than five (5) working days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Construction Manager's written permission.
- B. Ground Water: Assume ground-water level is at grade level unless a lower water table is noted on Drawings.

PART 2 - PRODUCTS

- 2.1 METAL CONDUIT AND FITTINGS
 - A. GRC: Comply with ANSI C80.1 and UL 6.
 - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems; a part of Atkore International.
 - 2. Allied Tube & Conduit; a part of Atkore International.
 - 3. Anamet Electrical, Inc.
 - 4. Calconduit.
 - 5. Electri-Flex Company.
 - 6. FSR Inc.

- 7. NEC, Inc.
- 8. Opti-Com Manufacturing Network, Inc (OMNI).
- 9. O-Z/Gedney; a brand of Emerson Industrial Automation.
- 10. Picoma Industries, Inc.
- 11. Republic Conduit.
- 12. Southwire Company.
- 13. Thomas & Betts Corporation; A Member of the ABB Group.
- 14. Topaz Electric; a division of Topaz Lighting Corp.
- 15. Western Tube and Conduit Corporation.
- 16. Wheatland Tube Company.
- C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.2 RIGID NONMETALLIC DUCT

- A. Underground Plastic Utilities Duct: Type EPC-80-PVC for below driveways and Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ARNCO Corp.
 - 2. Beck Manufacturing.
 - 3. CANTEX INC.
 - 4. CertainTeed Corporation.
 - 5. Condux International, Inc.
 - 6. Crown Line Plastics.
 - 7. ElecSys, Inc.
 - 8. Electri-Flex Company.
 - 9. Endot Industries Inc.
 - 10. IPEX USA LLC.
 - 11. Lamson & Sessions.
 - 12. Manhattan/CDT.
 - 13. National Pipe & Plastics.
 - 14. Opti-Com Manufacturing Network, Inc (OMNI).
 - 15. Spiraduct/AFC Cable Systems, Inc.
- C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
- D. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 DUCT ACCESSORIES

- A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit; a part of Atkore International.
 - b. CANTEX INC.
 - c. Carlon; a brand of Thomas & Betts Corporation.
 - d. IPEX USA LLC.
 - e. PenCell Plastics.
 - f. Underground Devices, Inc.
- B. Underground-Line Warning Tape: Comply with requirements for underground-line warning tape specified in Section 260553 "Identification for Electrical Systems."

2.4 SOURCE QUALITY CONTROL

- A. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Strength tests of complete boxes and covers shall be by an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 2. Testing machine pressure gages shall have current calibration certification, complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate layout and installation of duct, duct-bank, and handholes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Construction Manager if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.
- B. Coordinate elevations of duct and duct-bank entrances into handholes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct and duct bank will drain to handholes.

C. Clear and grub vegetation to be removed and protect vegetation to remain.

3.2 UNDERGROUND DUCT APPLICATION

- A. Duct for Electrical Cables More Than 600 V: Type EPC-80-PVC or Type EPC-40-PVC RNC as indicated on Electrical Construction Sheets, direct buried unless otherwise indicated.
- B. Duct for Electrical Feeders 600 V and Less: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.
- C. Duct for Electrical Branch Circuits: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.
- D. Bored Underground Duct: Type EPEC-40-HDPE unless otherwise indicated.
- E. Underground Ducts Crossing Driveways, roadways, and parking areas: Type GRC.
- F. Stub-ups: GRC.

3.3 EARTHWORK

- A. Excavation and Backfill: do not use heavy-duty, hydraulic-operated, compaction equipment without permission of civil engineer.
- B. Restore surface features at areas disturbed by excavation and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
- C. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary top-soiling, fertilizing, liming, seeding, sodding, sprigging, and mulching.
- D. Cut and patch existing pavement in the path of underground duct, duct bank, and underground structures according to "Cutting and Patching" Article in Section 017300 "Execution."

3.4 DUCT AND DUCT-BANK INSTALLATION

- A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.
- B. Install duct according to NEMA TCB 2.
- C. Slope: Pitch duct a minimum slope of 1:300 down toward and handholes and away from buildings and equipment. Slope duct from a high point between two handholes, to drain in both directions.

- D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches both horizontally and vertically, at other locations unless otherwise indicated.
 - 1. Duct shall have maximum of four 90-degree bends or the total of all bends shall be no more 360 degrees between pull points.
- E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.
- F. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-GRC transition. Install GRC penetrations of building walls as specified in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."
- G. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.
- H. Pulling Cord: Install 200-lbf-test nylon cord in empty ducts.
- I. Direct-Buried Duct and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct. Comply with requirements in Section 312000 "Earth Moving" for preparation of trench bottoms for pipes less than 6 inches in nominal diameter.
 - 2. Width: Excavate trench 12 inches wider than duct on each side.
 - 3. Width: Excavate trench 3 inches wider than duct on each side.
 - 4. Depth: Install top of duct at least 42 inches below finished grade unless otherwise indicated.
 - 5. Set elevation of bottom of duct bank below frost line.
 - 6. Support ducts on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
 - 7. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than five spacers per 20 feet of duct. Place spacers within 24 inches of duct ends. Stagger spacers approximately 6 inches between tiers. Secure spacers to earth and to ducts to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 - 8. Install duct with a minimum of 3 inches between ducts for like services and 6 inches between power and communications duct.
 - 9. Elbows: Install manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct direction unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.

- 10. Install manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct.
 - a. Couple RNC duct to GRC with adapters designed for this purpose and encase coupling with 3 inches of concrete.
 - b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches above finished floor and minimum 3 inches from conduit side to edge of slab.
 - c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of wall. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches above finished floor and no less than 3 inches from conduit side to edge of slab.
- 11. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place back-fill to 4 inches over duct and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction. Comply with requirements in Section 312000 "Earth Moving" for installation of backfill materials.
 - a. Place minimum 3 inches of sand as a bed for duct. Place sand to a minimum of 6 inches above top level of duct.
- J. Underground-Line Warning Tape: Bury conducting underground line specified in Section 260553 "Identification for Electrical Systems" no less than 12 inches above all duct and duct banks and approximately 12 inches below grade. Align tape parallel to and within 3 inches of centerline of duct and duct bank. Provide an additional warning tape for each 12-inch increment of duct bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.

3.5 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."
3.6 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and hand hole structures.
 - 2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch-long mandrel equal to duct size minus 1/4 inch. If obstructions are indicated, remove obstructions and retest.
- B. Correct deficiencies and retest as specified above to demonstrate compliance.
- C. Prepare test and inspection reports.

3.7 CLEANING

- A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.
- B. Remove foreign material in hand holes.

END OF SECTION 260543

SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 - 2. Sleeve-seal systems.
 - 3. Sleeve-seal fittings.
 - 4. Grout.
- B. Related Requirements:
 - 1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fireresistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

- 2.1 SLEEVES
 - A. Wall Sleeves:
 - 1. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
 - 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

- B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
- C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
- E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- F. Sleeves for Rectangular Openings:
 - 1. Material: Galvanized sheet steel.
 - 2. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter, less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 - b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. CALPICO, Inc.
 - c. Metraflex Company (The).
 - d. Pipeline Seal and Insulator, Inc.
 - e. Proco Products, Inc.
 - 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Carbon steel.
 - 4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

- A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Presealed System.
 - b. HOLDRITE.

2.4 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-firerated walls or floors.
- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

- 3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS
 - A. Comply with NECA 1.
 - B. Comply with NEMA VE 2 for cable tray and cable penetrations.
 - C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

- 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
- 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
- D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
- F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using cast-iron pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

Fairfield County Auditor's Office Real Estate Department

END OF SECTION 260544

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Identification for raceways.
 - 2. Identification of power and control cables.
 - 3. Identification for conductors.
 - 4. Underground-line warning tape.
 - 5. Warning labels and signs.
 - 6. Instruction signs.
 - 7. Equipment identification labels, including arc-flash warning labels.
 - 8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with ASME A13.1.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- D. Comply with ANSI Z535.4 for safety signs and labels.

- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
- F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Raceways and Cables Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- B. Warning labels and signs shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.3 LABELS

- A. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
- B. Snap-Around Labels for Raceways and Cables Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters of raceways they identify, and that stay in place by gripping action.
- C. Self-Adhesive Labels:
 - 1. Preprinted, 3-mil-thick, vinyl flexible label with acrylic pressure-sensitive adhesive.
 - a. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized to fit the raceway diameter, such that the clear shield overlaps the entire printed legend.
 - 2. Vinyl, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
 - a. Nominal Size: 3.5-by-5-inch.

3. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.

2.4 BANDS AND TUBES:

- A. Snap-Around, Color-Coding Bands for Raceways and Cables: Slit, pretensioned, flexible, solidcolored acrylic sleeves, 2 inches long, with diameters sized to suit diameters of raceways or cables they identify, and that stay in place by gripping action.
- B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameters of and shrunk to fit firmly around cables they identify. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.

2.5 TAPES AND STENCILS:

- A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
- B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.
- C. Tape and Stencil for Raceways Carrying Circuits 600 V or Less: 4-inch-wide black stripes on 10inch centers placed diagonally over orange background that extends full length of raceway or duct and is 12 inches wide. Stop stripes at legends.
- D. Floor Marking Tape: 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.
- E. Underground-Line Warning Tape
 - 1. Tape:
 - a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 - b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 - c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 - 2. Color and Printing:
 - a. Comply with ANSI Z535.1, ANSI Z535.2, ANSI Z535.3, ANSI Z535.4, and ANSI Z535.5.

- b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE" Insert inscription.
- c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".
- 3. Tag:
 - a. Detectable three-layer laminate, consisting of a printed pigmented polyolefin film, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core; bright colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
 - b. Width: 3 inches.
 - c. Overall Thickness: 5 mils.
 - d. Foil Core Thickness: 0.35 mil.
 - e. Weight: 28 lb/1000 sq. ft..
 - f. Tensile according to ASTM D 882: 70 lbf and 4600 psi.
- F. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.
- 2.6 Tags
 - A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.
 - B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.
 - C. Write-On Tags:
 - 1. Polyester Tags: 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment to raceway, conductor, or cable.
 - 2. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
- 2.7 Signs
 - A. Baked-Enamel Signs:
 - 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 - 2. 1/4-inch grommets in corners for mounting.
 - 3. Nominal Size: 7 by 10 inches.

- B. Metal-Backed Butyrate Signs:
 - 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396inch galvanized-steel backing and with colors, legend, and size required for application.
 - 2. 1/4-inch grommets in corners for mounting.
 - 3. Nominal Size: 10 by 14 inches.

2.8 CABLE TIES

- A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black, except where used for color-coding.
- B. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, self-locking.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F according to ASTM D 638: 7000 psi.
 - 3. UL 94 Flame Rating: 94V-0.
 - 4. Temperature Range: Minus 50 to plus 284 deg F.
 - 5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
- G. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 - 1. Outdoors: UV-stabilized nylon.
 - 2. In Spaces Handling Environmental Air: Plenum rated.
- H. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.
- I. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.
- J. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- K. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

3.3 IDENTIFICATION SCHEDULE

A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive vinyl label. Install labels at 30-foot maximum intervals.

- B. Power-Circuit Conductor Identification, 600 V or Less: For conductors in pull and junction boxes, and handholes, use color-coding conductor tape to identify the phase.
 - 1. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder and branch-circuit conductors.
 - a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 - b. Colors for 208/120-V Circuits:
 - 1) Phase A: Black.
 - 2) Phase B: Red.
 - 3) Phase C: Blue.
 - c. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- C. Install instructional sign, including the color code for grounded and ungrounded conductors using adhesive-film-type labels.
- D. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, and handholes, use self-adhesive vinyl labels with the conductor or cable designation, origin, and destination.
- E. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive vinyl labels with the conductor designation.
- F. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 - 2. Use system of marker-tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- G. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
 - 1. Install underground-line warning tape for direct-buried cables and cables in raceways.
- H. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless

otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

- I. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Selfadhesive warning labels.
 - 1. Comply with 29 CFR 1910.145.
 - 2. Identify system voltage with black letters on an orange background.
 - 3. Apply to exterior of door, cover, or other access.
 - 4. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 - a. Power-transfer switches.
 - b. Controls with external control power connections.
- J. Arc Flash Warning Labeling: Self-adhesive thermal transfer vinyl labels.
 - 1. Comply with NFPA 70E and ANSI Z535.4.
 - 2. Comply with Section 260574 "Overcurrent Protective Device Arc-Flash Study" requirements for arc-flash warning labels.
- K. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
- L. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.
- M. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: Engraved, laminated acrylic or melamine plastic label, punched or drilled for mechanical fasteners. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.

- d. Unless labels are provided with self-adhesive means of attachment, fasten them with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
- 2. Equipment To Be Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a engraved, laminated acrylic or melamine label.
 - b. Enclosures and electrical cabinets.
 - c. Access doors and panels for concealed electrical items.
 - d. Emergency system boxes and enclosures.
 - e. Enclosed switches.
 - f. Enclosed circuit breakers.
 - g. Enclosed controllers.
 - h. Push-button stations.
 - i. Contactors.
 - j. Remote-controlled switches, dimmer modules, and control devices.
 - k. Monitoring and control equipment.

END OF SECTION 260553

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 260572 - OVERCURRENT PROTECTIVE DEVICE SHORT-CIRCUIT STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.

1.3 DEFINITIONS

- A. One-Line Diagram: A diagram which shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
- B. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.
- C. SCCR: Short-circuit current rating.
- D. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

- A. Product Data: For computer software program to be used for studies.
- B. Other Action Submittals: Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
 - 1. Short-circuit study input data, including completed computer program input data sheets.
 - 2. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.

a. Submit study report for action prior to receiving final approval of the distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that the selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Short-Circuit Study Software Developer, Short-Circuit Study Specialist, Field Adjusting Agency.
- B. Product Certificates: For short-circuit study software, certifying compliance with IEEE 399.

1.6 QUALITY ASSURANCE

- A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are unacceptable.
- B. Short-Circuit Study Software Developer Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.
 - 1. The computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
- C. Short-Circuit Study Specialist Qualifications: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.
- D. Field Adjusting Agency Qualifications: An independent agency, with the experience and capability to adjust overcurrent devices and to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. CGI CYME.
 - 2. EDSA Micro Corporation.
 - 3. ESA Inc.
 - 4. Operation Technology, Inc.
 - 5. Power Analytics, Corporation.
 - 6. SKM Systems Analysis, Inc.
- B. Comply with IEEE 399 and IEEE 551.
- C. Analytical features of fault-current-study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
- D. Computer software program shall be capable of plotting and diagramming time-currentcharacteristic curves as part of its output.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS

- A. Executive summary.
- B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of the computer printout.
- C. One-line diagram, showing the following:
 - 1. Protective device designations and ampere ratings.
 - 2. Cable size and lengths.
 - 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 - 4. Motor and generator designations and kVA ratings.
 - 5. Switchgear, switchboard, motor-control center, and panelboard designations.
- D. Comments and recommendations for system improvements, where needed.
- E. Protective Device Evaluation:
 - 1. Evaluate equipment and protective devices and compare to short-circuit ratings.
 - 2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.

- 3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
- 4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.
- 5. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
- F. Short-Circuit Study Input Data: As described in "Power System Data" Article in the Evaluations.
- G. Short-Circuit Study Output:
 - 1. Low-Voltage Fault Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 - a. Voltage.
 - b. Calculated fault-current magnitude and angle.
 - c. Fault-point X/R ratio.
 - d. Equivalent impedance.
 - 2. Momentary Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 - a. Voltage.
 - b. Calculated symmetrical fault-current magnitude and angle.
 - c. Fault-point X/R ratio.
 - d. Calculated asymmetrical fault currents:
 - 1) Based on fault-point X/R ratio.
 - 2) Based on calculated symmetrical value multiplied by 1.6.
 - 3) Based on calculated symmetrical value multiplied by 2.7.
 - 3. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 - a. Voltage.
 - b. Calculated symmetrical fault-current magnitude and angle.
 - c. Fault-point X/R ratio.
 - d. No AC Decrement (NACD) ratio.
 - e. Equivalent impedance.
 - f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 - g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

1821-7001-50

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Obtain all data necessary for the conduct of the study.
 - 1. Verify completeness of data supplied on the one-line diagram. Call any discrepancies to the attention of Architect.
 - 2. For equipment provided that is Work of this Project, use characteristics submitted under the provisions of action submittals and information submittals for this Project.
- B. Gather and tabulate the following input data to support the short-circuit study. Comply with recommendations in IEEE 551 as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT Level III certification or NICET Electrical Power Testing Level III certification.
 - 1. Product Data for Project's overcurrent protective devices involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 - 2. Obtain electrical power utility impedance at the service.
 - 3. Power sources and ties.
 - 4. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
 - 5. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
 - 6. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip, SCCR, current rating, and breaker settings.
 - 7. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
 - 8. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
 - 9. Motor horsepower and NEMA MG 1 code letter designation.
 - 10. Cable sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).

3.2 SHORT-CIRCUIT STUDY

- A. Perform study following the general study procedures contained in IEEE 399.
- B. Calculate short-circuit currents according to IEEE 551.
- C. Base study on the device characteristics supplied by device manufacturer.

- D. The extent of the electrical power system to be studied is indicated on Drawings.
- E. Begin short-circuit current analysis at the service, extending down to the system overcurrent protective devices as follows:
 - 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 - 2. Exclude equipment rated 240-V ac or less when supplied by a single transformer rated less than 125 kVA.
- F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.
- G. The calculations shall include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and shall apply to low- and medium-voltage, three-phase ac systems. The calculations shall also account for the fault-current dc decrement, to address the asymmetrical requirements of the interrupting equipment.
 - 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.
- H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault at each of the following:
 - 1. Electric utility's supply termination point.
 - 2. Incoming switchgear.
 - 3. Unit substation primary and secondary terminals.
 - 4. Low-voltage switchgear.
 - 5. Control panels.
 - 6. Standby generators and automatic transfer switches.
 - 7. Branch circuit panelboards.
 - 8. Disconnect switches.

3.3 ADJUSTING

A. Make minor modifications to equipment as required to accomplish compliance with shortcircuit study.

3.4 DEMONSTRATION

A. Train Owner's operating and maintenance personnel in the use of study results.

END OF SECTION 260572

Fairfield County Auditor's Office Real Estate Department

SECTION 260573 - OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes computer-based, fault-current and overcurrent protective device coordination studies. Protective devices shall be set based on results of the protective device coordination study.

1.3 ACTION SUBMITTALS

- A. Product Data: For computer software program to be used for studies.
- B. Other Action Submittals: The following submittals shall be made after the approval process for system protective devices has been completed. Submittals shall be in digital form.
 - 1. Coordination-study input data, including completed computer program input data sheets.
 - 2. Study and Equipment Evaluation Reports.
 - 3. Coordination-Study Report.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For coordination-study specialist.
- B. Product Certificates: For coordination-study and fault-current-study computer software programs, certifying compliance with IEEE 399.

1.5 QUALITY ASSURANCE

- A. All steel products must be made and manufactured in the United States of America.
- B. Comply with the Buy American Act (41 U.S.C. 10).

- C. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are not acceptable.
- D. Coordination-Study Specialist Qualifications: An entity experienced in the application of computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.
 - 1. The manufacturer of the approved distribution system equipment over current protective devices, shall be responsible for the coordination study. The coordination study shall be completed prior to submitting the distribution equipment for approval. The manufacturer shall only submit devices that can be suitably coordinated All elements of the study shall be performed under the direct supervision and control of the coordination study engineer as selected by the manufacturer.
- E. Comply with IEEE 242 for short-circuit currents and coordination time intervals.
- F. Comply with IEEE 399 for general study procedures.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

- A. Computer Software Developers: Subject to compliance with requirements, provide products by one of the following:
 - 1. CGI CYME.
 - 2. EDSA Micro Corporation.
 - 3. SKM Systems Analysis, Inc.

2.2 COMPUTER SOFTWARE PROGRAM REQUIREMENTS

- A. Comply with IEEE 399.
- B. Analytical features of fault-current-study computer software program shall include "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
- C. Computer software program shall be capable of plotting and diagramming time-currentcharacteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.
 - 1. Optional Features:

- a. Arcing faults.
- b. Simultaneous faults.
- c. Explicit negative sequence.
- d. Mutual coupling in zero sequence.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance. Devices to be coordinated are indicated on Drawings.
 - 1. Proceed with coordination study only after relevant equipment submittals have been assembled.

3.2 POWER SYSTEM DATA

- A. Gather and tabulate the following input data to support coordination study:
 - 1. Product Data for overcurrent protective devices specified in other electrical Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 - 2. Impedance of utility service entrance.
 - 3. Electrical Distribution System Diagram: In hard-copy and electronic-copy formats, showing the following:
 - a. Circuit-breaker and fuse-current ratings and types.
 - b. Relays and associated power and current transformer ratings and ratios.
 - c. Transformer kilovolt amperes, primary and secondary voltages, connection type, impedance, and X/R ratios.
 - d. Generator kilovolt amperes, size, voltage, and source impedance.
 - e. Cables: Indicate conduit material, sizes of conductors, conductor material, insulation, and length.
 - f. Motor horsepower and code letter designation according to NEMA MG 1.
 - 4. Data sheets to supplement electrical distribution system diagram, cross-referenced with tag numbers on diagram, showing the following:
 - a. Special load considerations, including starting inrush currents and frequent starting and stopping.

- b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
- c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
- d. Generator thermal-damage curve.
- e. Ratings, types, and settings of utility company's overcurrent protective devices.
- f. Special overcurrent protective device settings or types stipulated by utility company.
- g. Time-current-characteristic curves of devices indicated to be coordinated.
- h. Manufacturer, frame size, interrupting rating in amperes rms symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, instantaneous and ground fault adjustment range for circuit breakers.
- i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
- j. Panelboards, switchboards, motor-controller ampacity, and interrupting rating in amperes rms symmetrical.

3.3 FAULT-CURRENT STUDY

- A. Calculate the maximum available short-circuit current in amperes rms symmetrical at circuitbreaker positions of the electrical power distribution system. The calculation shall be for a current immediately after initiation and for a three-phase bolted short circuit at each of the following:
 - 1. Switchgear and switchboard bus.
 - 2. Motor-controllers.
 - 3. Distribution panelboard.
 - 4. Branch circuit panelboard.
- B. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Include studies of system-switching configurations and alternate operations that could result in maximum fault conditions.
- C. Calculate momentary and interrupting duties on the basis of maximum available fault current.
- D. Calculations to verify interrupting ratings of overcurrent protective devices shall comply with IEEE 241 and IEEE 242.
 - 1. Transformers:
 - a. ANSI C57.12.10.
 - b. ANSI C57.12.22.
 - c. ANSI C57.12.40.
 - d. IEEE C57.12.00.

e. IEEE C57.96.

- 2. Medium-Voltage Circuit Breakers: IEEE C37.010.
- 3. Low-Voltage Circuit Breakers: IEEE 1015 and IEEE C37.20.1.
- 4. Low-Voltage Fuses: IEEE C37.46.
- E. Study Report:
 - 1. Show calculated X/R ratios and equipment interrupting rating (1/2-cycle) fault currents on electrical distribution system diagram.
- F. Equipment Evaluation Report:
 - 1. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 - 2. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.
 - 3. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

3.4 COORDINATION STUDY

- A. Perform coordination study using approved computer software program. Prepare a written report using results of fault-current study. Comply with IEEE 399.
 - 1. Calculate the maximum and minimum 1/2-cycle short-circuit currents.
 - 2. Calculate the maximum and minimum interrupting duty (5 cycles to 2 seconds) shortcircuit currents.
 - 3. Calculate the maximum and minimum ground-fault currents.
- B. Comply with IEEE 241 IEEE 242 recommendations for fault currents and time intervals.
- C. Transformer Primary Overcurrent Protective Devices:
 - 1. Device shall not operate in response to the following:
 - a. Inrush current when first energized.
 - b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 - c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.
 - 2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

- D. Motors served by voltages more than 600 V shall be protected according to IEEE 620.
- E. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and conductor melting curves in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.
- F. Coordination-Study Report: Prepare a written report indicating the following results of coordination study:
 - 1. Tabular Format of Settings Selected for Overcurrent Protective Devices:
 - a. Device tag.
 - b. Relay-current transformer ratios; and tap, time-dial, and instantaneous-pickup values.
 - c. Circuit-breaker sensor rating; and long-time, short-time, and instantaneous settings.
 - d. Fuse-current rating and type.
 - e. Ground-fault relay-pickup and time-delay settings.
 - 2. Coordination Curves: Prepared to determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:
 - a. Device tag.
 - b. Voltage and current ratio for curves.
 - c. Three-phase and single-phase damage points for each transformer.
 - d. No damage, melting, and clearing curves for fuses.
 - e. Cable damage curves.
 - f. Transformer inrush points.
 - g. Maximum fault-current cutoff point.
- G. Completed data sheets for setting of overcurrent protective devices.

END OF SECTION 260573

SECTION 260574 - OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.3 DEFINITIONS

- A. One-Line Diagram: A diagram which shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
- B. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.
- C. SCCR: Short-circuit current rating.
- D. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

- A. Product Data: For computer software program to be used for studies.
- B. Other Action Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals shall be in digital form.
 - 1. Arc-flash study input data, including completed computer program input data sheets.
 - 2. Arc-flash study report; signed, dated, and sealed by a qualified professional engineer.
 - a. Submit study report for action prior to receiving final approval of the distribution equipment submittals. If formal completion of studies will cause delay in

equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that the selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Arc-Flash Study Software Developer, Arc-Flash Study Specialist and Field Adjusting Agency.
- B. Product Certificates: For arc-flash hazard analysis software, certifying compliance with IEEE 1584 and NFPA 70E.

1.6 CLOSEOUT SUBMITTALS

- A. Maintenance procedures according to requirements in NFPA 70E shall be provided in the equipment manuals.
- B. Operation and Maintenance Procedures: In addition to items specified in Section 017823 "Operation and Maintenance Data," provide maintenance procedures for use by Owner's personnel that comply with requirements in NFPA 70E.

1.7 QUALITY ASSURANCE

- A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are unacceptable.
- B. Arc-Flash Study Software Developer Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.
 - 1. The computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
- C. Arc-Flash Study Specialist Qualifications: Professional engineer in charge of performing the study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.
- D. Field Adjusting Agency Qualifications: An independent agency, with the experience and capability to adjust overcurrent devices and to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing

laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

- A. Software Developers: Subject to compliance with requirements, provide software by one of the following or available software developers offering software that may be used for the Work include, but are not limited to, the following:
 - 1. ESA Inc.
 - 2. Operation Technology, Inc.
 - 3. Power Analytics, Corporation.
 - 4. SKM Systems Analysis, Inc.
- B. Comply with IEEE 1584 and NFPA 70E.
- C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENT

- A. Executive summary.
- B. Study descriptions, purpose, basis and scope.
- C. One-line diagram, showing the following:
 - 1. Protective device designations and ampere ratings.
 - 2. Cable size and lengths.
 - 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 - 4. Motor and generator designations and kVA ratings.
 - 5. Switchgear, switchboard, and panelboard designations.
- D. Study Input Data: As described in "Power System Data" Article.
- E. Short-Circuit Study Output:
 - 1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 - a. Voltage.

- b. Calculated symmetrical fault-current magnitude and angle.
- c. Fault-point X/R ratio.
- d. No AC Decrement (NACD) ratio.
- e. Equivalent impedance.
- f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
- g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.
- F. Incident Energy and Flash Protection Boundary Calculations:
 - 1. Arcing fault magnitude.
 - 2. Protective device clearing time.
 - 3. Duration of arc.
 - 4. Arc-flash boundary.
 - 5. Working distance.
 - 6. Incident energy.
 - 7. Hazard risk category.
 - 8. Recommendations for arc-flash energy reduction.
- G. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and guide for interpretation of the computer printout.

2.3 ARC-FLASH WARNING LABELS

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems." Produce a 3.5-by-5-inch thermal transfer label of high-adhesion polyester for each work location included in the analysis.
- B. The label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:
 - 1. Location designation.
 - 2. Nominal voltage.
 - 3. Flash protection boundary.
 - 4. Hazard risk category.
 - 5. Incident energy.
 - 6. Working distance.
 - 7. Engineering report number, revision number, and issue date.
- C. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals. Proceed with arc-flash study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to arc-flash study may not be used in study.

3.2 SHORT-CIRCUIT STUDY

- A. Perform study following the general study procedures contained in IEEE 399.
- B. Calculate short-circuit currents according to IEEE 551.
- C. Base study on the device characteristics supplied by device manufacturer.
- D. The extent of the electrical power system to be studied is indicated on Drawings.
- E. Begin analysis at the service, extending down to the system overcurrent protective devices as follows:
 - 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 - 2. Exclude equipment rated 240-V ac or less when supplied by a single transformer rated less than 125 kVA.
- F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Include studies of system-switching configurations and alternate operations that could result in maximum fault conditions.
- G. The calculations shall include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and shall apply to low- and medium-voltage, three-phase ac systems.
- H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and single line-to-ground fault at each of the following:
 - 1. Electric utility's supply termination point.
 - 2. Switchgear.
 - 3. Unit substation primary and secondary terminals.
 - 4. Low-voltage switchgear.
 - 5. Standby generators and automatic transfer switches.
 - 6. Branch circuit panelboards.

3.3 ARC-FLASH HAZARD ANALYSIS

- A. Comply with NFPA 70E and its Annex D for hazard analysis study.
- B. Use the short-circuit study output and the field-verified settings of the overcurrent devices.
- C. Calculate maximum and minimum contributions of fault-current size.
 - 1. The minimum calculation shall assume that the utility contribution is at a minimum and shall assume no motor load.
 - 2. The maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.
- D. Calculate the arc-flash protection boundary and incident energy at locations in the electrical distribution system where personnel could perform work on energized parts.
- E. Safe working distances shall be specified for calculated fault locations based on the calculated arc-flash boundary, considering incident energy of 1.2 cal/sq.cm.
- F. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators shall be decremented as follows:
 - 1. Fault contribution from induction motors should not be considered beyond three to five cycles.
 - 2. Fault contribution from synchronous motors and generators should be decayed to match the actual decrement of each as closely as possible (e.g., contributions from permanent magnet generators will typically decay from 10 per unit to three per unit after 10 cycles).
- G. Arc-flash computation shall include both line and load side of a circuit breaker as follows:
 - 1. When the circuit breaker is in a separate enclosure.
 - 2. When the line terminals of the circuit breaker are separate from the work location.
- H. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing time at two seconds based on IEEE 1584, Section B.1.2.

3.4 POWER SYSTEM DATA

A. Obtain all data necessary for the conduct of the arc-flash hazard analysis.
- 1. Verify completeness of data supplied on the one-line diagram on Drawings. Call discrepancies to the attention of Architect.
- 2. For new equipment, use characteristics submitted under the provisions of action submittals and information submittals for this Project.
- 3. For existing equipment, whether or not relocated, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers.
- B. Gather and tabulate the following input data to support coordination study. Comply with recommendations in IEEE 1584 and NFPA 70E as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT Level III certification or NICET Electrical Power Testing Level III certification.
 - 1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 - 2. Obtain electrical power utility impedance at the service.
 - 3. Power sources and ties.
 - 4. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in per cent, and phase shift.
 - 5. For reactors, provide manufacturer and model designation, voltage rating and impedance.
 - 6. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
 - 7. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
 - 8. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
 - 9. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
 - 10. Motor horsepower and NEMA MG 1 code letter designation.
 - 11. Low-voltage cable sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).

3.5 LABELING

- A. Apply arc-flash label(s) for 600-V ac, 480-V ac, and applicable 208-V ac panelboards and disconnects and for each of the following locations:
 - 1. Service entrance distribution panel.
 - 2. Automatic transfer switches.

- 3. Panel boards.
- 4. Control panels.
- 5. Enclosed disconnect switches.
- 6. Enclosed breakers.

3.6 APPLICATION OF WARNING LABELS

- A. Install the arc-fault warning labels under the direct supervision and control of the Arc-Flash Study Specialist.
- B. Field coordinate location of label(s) on each piece of equipment with Owner so readily visible by Operational personnel.

3.7 DEMONSTRATION

A. Engage the Arc-Flash Study Specialist to train Owner's maintenance personnel in the potential arc-flash hazards associated with working on energized equipment and the significance of the arc-flash warning labels.

END OF SECTION 260574

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Time switches.
 - 2. Photoelectric switches.
 - 3. Standalone daylight-harvesting switching controls.
 - 4. Indoor occupancy sensors.
 - 5. Lighting contactors.
 - B. Related Requirements:
 - 1. Section 262726 "Wiring Devices" for wall-box dimmers, and manual light switches.
- 1.3 ACTION SUBMITTALS
 - A. Product Data: For each type of product.
- 1.4 INFORMATIONAL SUBMITTALS
 - A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Industries, Inc.
 - 2. Intermatic, Inc.
 - 3. Leviton Manufacturing Co., Inc.
 - 4. NSi Industries LLC.
- B. Electronic Time Switches: Solid state, programmable, with alphanumeric display; complying with UL 917.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Contact Configuration: DPDT.
 - 3. Contact Rating: 20-A ballast load, 120-/277-V ac.
 - 4. Programs: Fifty-six on-off set points on a 24-hour schedule and an annual holiday schedule that overrides the weekly operation on holidays.
 - 5. Circuitry: Allow connection of a photoelectric relay as substitute for on-off function of a program on selected channels.
 - 6. Astronomic Time: All channels.
 - 7. Automatic daylight savings time changeover.
 - 8. Battery Backup: Not less than seven days reserve, to maintain schedules and time clock.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Intermatic, Inc.
 - 2. Cooper Industries, Inc.
 - 3. Leviton Manufacturing Co., Inc.
 - 4. NSi Industries LLC.
- B. Description: Solid state, with DPST dry contacts rated for 1800-VA tungsten or 1000-VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- 2. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of the photocell to prevent fixed light sources from causing turn-off.
- 3. Time Delay: Fifteen second minimum, to prevent false operation.
- 4. Surge Protection: Metal-oxide varistor.
- 5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.

2.3 DAYLIGHT-HARVESTING DIMMING CONTROLS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Lutron.
 - 2. Cooper Industries, Inc.
 - 3. Hubbell Building Automation, Inc.
 - 4. Leviton Manufacturing Co., Inc.
 - 5. Lithonia Lighting; Acuity Brands Lighting, Inc.
 - 6. WattStopper; a Legrand[®] Group brand.
- B. System Description: Sensing daylight and electrical lighting levels, the system adjusts the indoor electrical lighting levels. As daylight increases, the lights are dimmed.
 - 1. Lighting control set point is based on two lighting conditions:
 - a. When no daylight is present (target level).
 - b. When significant daylight is present.
 - 2. System programming is done with two hand-held, remote-control tools.
 - a. Initial setup tool.
 - b. Tool for occupants to adjust the target levels by increasing the set point up to 25 percent, or by minimizing the electric lighting level.
- C. Ceiling-Mounted Dimming Controls: Solid-state, light-level sensor unit, with separate controller unit, to detect changes in lighting levels that are perceived by the eye.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Sensor Output: 0- to 10-V dc to operate electronic dimming ballasts. Sensor is powered by controller unit.
 - 3. Power Pack: Sensor has 24-V dc, Class 2 power source, as defined by NFPA 70.
 - 4. Light-Level Sensor Set-Point Adjustment Range: 20 to 60 fc.

2.4 INDOOR OCCUPANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Industries, Inc.
 - 2. Hubbell Building Automation, Inc.
 - 3. Leviton Manufacturing Co., Inc.
 - 4. Lithonia Lighting; Acuity Brands Lighting, Inc.
 - 5. Lutron Electronics Co., Inc.
 - 6. NSi Industries LLC.
 - 7. Sensor Switch, Inc.
 - 8. WattStopper; a Legrand[®] Group brand.
- B. General Requirements for Sensors: Wall- or ceiling-mounted, solid-state indoor occupancy sensors with a separate power pack.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 30 minutes.
 - 3. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor is powered from the power pack.
 - 4. Power Pack: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 - 5. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 6. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
 - 7. Bypass Switch: Override the "on" function in case of sensor failure.
 - 8. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.
- C. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.

- 2. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
- 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.

2.5 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Industries, Inc.
 - 2. Hubbell Building Automation, Inc.
 - 3. Leviton Manufacturing Co., Inc.
 - 4. Lithonia Lighting; Acuity Brands Lighting, Inc.
 - 5. Lutron Electronics Co., Inc.
 - 6. NSi Industries LLC.
 - 7. Sensor Switch, Inc.
 - 8. WattStopper; a Legrand[®] Group brand.
- B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor, suitable for mounting in a single gang switchbox.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
 - 3. Switch Rating: Not less than 1000 watts LED.
- C. Wall-Switch Sensor Tag WS1:
 - 1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 2100 sq. ft.
 - 2. Sensing Technology: Dual technology PIR and ultrasonic.
 - 3. Switch Type: SP, field selectable automatic "on," or manual "on" automatic "off."
 - 4. Voltage: Match the circuit voltage; dual-technology type.
 - 5. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
 - 6. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
 - 7. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
- D. Wall-Switch Sensor Tag WS2:
 - 1. Standard Range: 210-degree field of view, with a minimum coverage area of 900 sq. ft..

- 2. Sensing Technology: PIR.
- 3. Switch Type: SP, field selectable automatic "on," or manual "on" automatic "off."
- 4. Voltage: Match the circuit voltage; dual-technology type.
- 5. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
- 6. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
- 7. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.

2.6 LIGHTING CONTACTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Allen-Bradley/Rockwell Automation.
 - 2. ASCO Power Technologies, LP; a business of Emerson Network Power.
 - 3. Eaton.
 - 4. General Electric Company.
 - 5. Square D.
- B. Description: Electrically operated and mechanically held, and also electrically operated electrically held per plans, combination-type lighting contactors with nonfused disconnect, complying with NEMA ICS 2 and UL 508.
 - 1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
 - 2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
 - 3. Enclosure: Comply with NEMA 250.
 - 4. Provide with control and pilot devices matching the NEMA type specified for the enclosure; Red LED "on" pilot light and HOA switch for testing.

2.7 CONDUCTORS AND CABLES

- Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG.
 Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 SENSOR INSTALLATION

- A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.
- B. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.2 WIRING INSTALLATION

- A. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.
- B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
- C. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
- D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.3 IDENTIFICATION

- A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
 - 1. Identify controlled circuits in lighting contactors.
 - 2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.
- B. Label time switches and contactors with a unique designation.

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Lighting control devices will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.5 ADJUSTING

- A. Occupancy Adjustments: When requested within 2 months from date of Substantial Completion, provide on-site assistance in adjusting sensors to suit actual occupied conditions. Provide up to one visit to Project during other-than-normal occupancy hours for this purpose.
 - 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
 - 2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.

3.6 DEMONSTRATION

- A. Coordinate demonstration of products specified in this Section with demonstration requirements.
- B. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923

SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS

- A. ATS: Acceptance testing specification.
- B. GFCI: Ground-fault circuit interrupter.
- C. GFEP: Ground-fault equipment protection.
- D. HID: High-intensity discharge.
- E. MCCB: Molded-case circuit breaker.
- F. SPD: Surge protective device.
- G. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
 - 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 - 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.

- 1. Include dimensioned plans, elevations, sections, and details.
- 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
- 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
- 4. Detail bus configuration, current, and voltage ratings.
- 5. Short-circuit current rating of panelboards and overcurrent protective devices.
- 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 7. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Panelboard Schedules: For installation in panelboards.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823
 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Keys: Two spares for each type of panelboard cabinet lock.
 - 2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.

1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
- B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.10 FIELD CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 23 deg F to plus 104 deg F.
 - b. Altitude: Not exceeding 6600 feet.

1.11 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 - 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

- A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NEMA PB 1.

- E. Comply with NFPA 70.
- F. Enclosures: Flush and Surface-mounted, dead-front cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - c. Kitchen Wash-Down Areas: NEMA 250, Type 4X, stainless steel.
 - d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - 2. Height: 84 inches maximum.
 - 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
 - 4. Finishes:
 - a. Panels and Trim: galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Same finish as panels and trim.
- G. Incoming Mains:
 - 1. Location: Top or Bottom.
 - 2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.
- H. Phase, Neutral, and Ground Buses:
 - 1. Material: Tin-plated aluminum.
 - a. Plating shall run entire length of bus.
 - b. Bus shall be fully rated the entire length.
 - 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
 - 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 - 4. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
 - 5. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others designated on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.

- I. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Tin-plated aluminum or Hard-drawn copper, 98 percent conductivity.
 - 2. Terminations shall allow use of 75 deg C rated conductors without derating.
 - 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 - 4. Main and Neutral Lugs: Compression type, with a lug on the neutral bar for each pole in the panelboard.
 - 5. Ground Lugs and Bus-Configured Terminators: Compression type, with a lug on the bar for each pole in the panelboard.
 - 6. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 7. Subfeed (Double) Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 - 8. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.
- J. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.
- K. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
 - 1. Panelboards and overcurrent protective devices rated 240 V or less shall have shortcircuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
 - 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Panelboards as required for the electrical system shall withstand the effects of earthquake motions determined according to ASCE 7-10 Chapter 13.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.3 POWER PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Eaton.
- 2. General Electric Company; GE Energy Management Electrical Distribution.
- 3. SIEMENS Industry, Inc.; Energy Management Division.
- 4. Square D; by Schneider Electric.
- B. Panelboards: NEMA PB 1, distribution type.
- C. Mains: Circuit breaker or Lugs only.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton.
 - 2. General Electric Company; GE Energy Management Electrical Distribution.
 - 3. SIEMENS Industry, Inc.; Energy Management Division.
 - 4. Square D; by Schneider Electric.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Circuit breaker or lugs only.
- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Eaton.
 - 2. General Electric Company; GE Energy Management Electrical Distribution.
 - 3. SIEMENS Industry, Inc.; Energy Management Division.
 - 4. Square D; by Schneider Electric.
- B. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers:

- a. Inverse time-current element for low-level overloads.
- b. Instantaneous magnetic trip element for short circuits.
- c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
- 3. Electronic Trip Circuit Breakers:
 - a. RMS sensing.
 - b. Field-replaceable rating plug or electronic trip.
 - c. Field-Adjustable Settings:
 - 1) Instantaneous trip.
 - 2) Long- and short-time pickup levels.
 - 3) Long and short time adjustments.
 - 4) Ground-fault pickup level, time delay, and I squared T response.
- 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
- 5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
- 6. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
- 7. Subfeed Circuit Breakers: Vertically mounted.
- 8. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Compression style, suitable for number, size, trip ratings, and conductor materials.
 - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 - d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - e. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 - f. Multipole units enclosed in a factory assembled to operate as a single unit.
 - g. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
 - h. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.
 - i.

2.6 IDENTIFICATION

- A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Type-written circuit directory card mounted inside panelboard door with transparent plastic protective cover.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
- B. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.
- C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
- D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Comply with NECA 1.
- C. Install panelboards and accessories according to NEMA PB 1.1.
- D. Equipment Mounting:

- 1. Attach panelboard to the vertical finished or structural surface behind the panelboard.
- 2. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- E. Mount top of trim 72 inches above finished floor unless otherwise indicated.
- F. Mount panelboard cabinet plumb and rigid without distortion of box.
- G. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- H. Mounting panelboards with space behind is recommended for damp, wet, or dirty locations. The steel slotted supports in the following paragraph provide an even mounting surface and the recommended space behind to prevent moisture or dirt collection.
- I. Mount surface-mounted panelboards to steel slotted supports 1 1/4 inch in depth. Orient steel slotted supports vertically.
- J. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
 - 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.
- K. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
- L. Install filler plates in unused spaces.
- M. Stub three 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub three 1-inch empty conduits into raised floor space or below slab not on grade.
- N. Arrange conductors in gutters into groups and bundle and wrap with wire ties.
- O. Mount spare fuse cabinet in accessible location.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

- B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.
- F. Install arc-flash labeling. Refer to 260574 "Overcurrent Protective Device Arc-Flash Study".

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA ATS, Paragraph 7.6 Circuit Breakers. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- D. Panelboards will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as indicated

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Receptacles, receptacles with integral GFCI, USB, and associated device plates.
 - 2. Tamper-resistant receptacles.
 - 3. Weather-resistant receptacles.
 - 4. Snap switches and wall-box dimmers.
 - 5. Wall-switch and exterior occupancy sensors.
 - 6. Floor service outlets, poke-through assemblies, and multioutlet assemblies.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- D. RFI: Radio-frequency interference.
- E. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordination:
 - 1. Receptacles for Owner-Furnished Equipment: Match plug configurations.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

WIRING DEVICES

B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packinglabel warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton (Arrow Hart).
 - 2. Hubbell Incorporated; Wiring Device-Kellems.
 - 3. Leviton Manufacturing Co., Inc.
 - 4. Pass & Seymour/Legrand (Pass & Seymour).
- B. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.
- C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:
 - 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
 - 2. Devices shall comply with the requirements in this Section.

2.3 STRAIGHT-BLADE RECEPTACLES

- A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Cooper; 5351 (single), CR5362 (duplex).
 - b. Hubbell; HBL5351 (single), HBL5352 (duplex).
 - c. Leviton; 5891 (single), 5352 (duplex).
 - d. Pass & Seymour; 5361 (single), 5362 (duplex).

2.4 GFCI RECEPTACLES

- A. General Description:
 - 1. Straight blade, non-feed-through type.
 - 2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
 - 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.
- B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Cooper; VGF20.
 - b. Hubbell; GFR5352L.
 - c. Pass & Seymour; 2095.
 - d. Leviton; 7590.

2.5 STRAIGHT-BLADE USB CHARGER RECEPTACLES

- A. Convenience Receptacles, 125 V, 20 A: Configuration 5-20R, Tamper-Resistant, two USB ports 3.8A, 5V DC, type A, class 2.0, UL 498, and FS W-C-596.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Cooper; TR7756 (duplex).
 - b. Hubbell; USB20X (duplex).
 - c. Leviton; T5832 (duplex).
 - d. Pass & Seymour; TR5362USB (duplex).

2.6 TOGGLE SWITCHES

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.

WIRING DEVICES

B. Switches, 120/277 V, 20 A:

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - 1) Single Pole:
 - a) Cooper; AH1221.
 - b) Hubbell; HBL1221.
 - c) Leviton; 1221-2.
 - d) Pass & Seymour; CSB20AC1.
 - 2) Two Pole:
 - a) Cooper; AH1222.
 - b) Hubbell; HBL1222.
 - c) Leviton; 1222-2.
 - d) Pass & Seymour; CSB20AC2.
 - 3) Three Way:
 - a) Cooper; AH1223.
 - b) Hubbell; HBL1223.
 - c) Leviton; 1223-2.
 - d) Pass & Seymour; CSB20AC3.
 - 4) Four Way:
 - a) Cooper; AH1224.
 - b) Hubbell; HBL1224.
 - c) Leviton; 1224-2.
 - d) Pass & Seymour; CSB20AC4.
- C. Pilot-Light Switches, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Cooper; AH1221PL for 120 and 277 V.
 - b. Hubbell; HBL1201PL for 120 and 277 V.
 - c. Leviton; 1221-LH1.
 - d. Pass & Seymour; PS20AC1RPL for 120 V, PS20AC1RPL7 for 277 V.
 - 2. Description: Single pole, with LED-lighted handle, illuminated when switch is "off."

2.7 WALL-BOX DIMMERS

- A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
- B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.
- C. LED Dimmer shall be rated for wattage and inrush current of the LED drivers. LED dimmers shall be adjustable from 10-90%. LED Dimmer shall be compatible with LED lighting fixtures.

2.8 WALL PLATES

- A. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces (Non-Inmate Areas): Smooth, high-impact thermoplastic.
 - 3. Material for Finished Spaces (Inmate Areas): 14-guage steel tamperproof cover. Kenall, Fail-Safe, New Star or equal.
 - 4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.
- B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.
 1.

2.9 FINISHES

- A. Device Color:
 - 1. Wiring Devices Connected to Optional Required Power System: White unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Wiring Devices Connected to Uninterruptable Power System: Red.
 - 3. TVSS Devices: Blue.
- B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

- B. Coordination with Other Trades:
 - 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.
- C. Conductors:
 - 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 - 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
- D. Device Installation:
 - 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 - 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
 - 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
 - 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
 - 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 - 8. Tighten unused terminal screws on the device.
 - 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Dimmers:
 - 1. Install dimmers within terms of their listing.
 - 2. Verify that dimmers used for fan speed control are listed for that application.
 - 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
- H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.
- 3.2 GFCI RECEPTACLES
 - A. Install non-feed-through-type GFCI receptacles.
- 3.3 IDENTIFICATION
 - A. Comply with Section 260553 "Identification for Electrical Systems."
 - B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test Instruments: Use instruments that comply with UL 1436.
 - 2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- B. Tests for Convenience Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.

WIRING DEVICES

- 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
- 3. Ground Impedance: Values of up to 2 ohms are acceptable.
- 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
- 5. Using the test plug, verify that the device and its outlet box are securely mounted.
- 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- C. Wiring device will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

END OF SECTION 262726

SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cartridge fuses rated 600 V ac and less for use in the following:
 - a. Control circuits.
 - b. Panelboards.
 - c. Switchboards.
 - d. Enclosed controllers.
 - e. Enclosed switches.
 - 2. Spare-fuse cabinets.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:
 - 1. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 2. Current-limitation curves for fuses with current-limiting characteristics.
 - 3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse.
 - 4. Coordination charts and tables and related data.
 - 5. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

- 1. Ambient temperature adjustment information.
- 2. Current-limitation curves for fuses with current-limiting characteristics.
- 3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project.
- 4. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Bussmann, an Eaton business.
 - 2. Edison; a brand of Bussmann by Eaton.
 - 3. Ferraz Shawmut, Inc.
 - 4. Littelfuse, Inc.
- B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES

- A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
 - 1. Type RK-1: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 - 2. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, time delay.
 - 3. Type CD: 600-V, 31- to 60-A rating, 200 kAIC, time delay.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA FU 1 for cartridge fuses.

- D. Comply with NFPA 70.
- E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

2.3 SPARE-FUSE CABINET

- A. Characteristics: Wall-mounted steel unit with full-length, recessed piano-hinged door and keycoded cam lock and pull.
 - 1. Size: Adequate for storage of spare fuses specified with 15 percent spare capacity minimum.
 - 2. Finish: Gray, baked enamel.
 - 3. Identification: "SPARE FUSES" in 1-1/2-inch-high letters on exterior of door.
 - 4. Fuse Pullers: For each size of fuse, where applicable and available, from fuse manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
- B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
- C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

- A. Cartridge Fuses:
 - 1. Service Entrance: Class RK1, time delay.
 - 2. Feeders: Class RK1, time delay.
 - 3. Motor Branch Circuits: Class RK1, time delay.
 - 4. Other Branch Circuits: Class RK1, time delay.
 - 5. Control Transformer Circuits: Class CC, time delay, control transformer duty.

3.3 INSTALLATION

- A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.
- B. Install spare-fuse cabinet(s) in location shown on the Drawings or as indicated in the field by Construction Manager.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Molded-case circuit breakers (MCCBs).
 - 4. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Enclosed switches and circuit breakers as required for the electrical system shall withstand the effects of earthquake motions determined according to ASCE 7-10 Chapter 13.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

- 1. Enclosure types and details for types other than NEMA 250, Type 1.
- 2. Current and voltage ratings.
- 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
- 4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
- B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Field quality-control reports.
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
- 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
- 2. Fuse Pullers: Two for each size and type.

1.9 QUALITY ASSURANCE

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NFPA 70.

1.10 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 - 2. Altitude: Not exceeding 6600 feet.

1.11 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ABB Inc.
 - 2. Eaton.
 - 3. General Electric Company.

- 4. SIEMENS Industry, Inc.; Energy Management Division.
- 5. Square D; by Schneider Electric.
- B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 - 5. Hookstick Handle: Allows use of a hookstick to operate the handle.
 - 6. Lugs: Compression type, suitable for number, size, and conductor material.
 - 7. Service-Rated Switches: Labeled for use as service equipment, where indicated on drawings.

2.2 NONFUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton.
 - 2. General Electric Company.
 - 3. SIEMENS Industry, Inc.; Energy Management Division.
 - 4. Square D; by Schneider Electric.
- B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 - 4. Hookstick Handle: Allows use of a hookstick to operate the handle.
 - 5. Lugs: Compression type, suitable for number, size, and conductor material.

2.3 MOLDED-CASE CIRCUIT BREAKERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Eaton.
 - 2. General Electric Company.
 - 3. SIEMENS Industry, Inc.; Energy Management Division.
 - 4. Square D; by Schneider Electric.
- B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.
- C. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- D. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
- E. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).
- F. Features and Accessories:
 - 1. Standard frame sizes, trip ratings, and number of poles.
 - 2. Lugs: Compression type, suitable for number, size, trip ratings, and conductor material.
 - 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 - 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 - 5. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 - 6. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.

2.4 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.
 - 3. Kitchen Wash-Down Areas: NEMA 250, Type 4X, stainless steel.

4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- B. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- D. Install fuses in fusible devices.
- E. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.

- 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 262816

Fairfield County Auditor's Office Real Estate Department

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 264313 - SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes field-mounted surge protection devices (SPDs) for the following low-voltage (120 to 600 V) power distribution:
 - 1. Main Distribution Panel 'MDP' 208/120V, 3-phase, 4-wire.

1.3 REFERENCED STANDARDS

- A. IEEE C62.41: IEEE Guide for Surge Voltages in Low Voltage AC Power Circuits (ANSI).
- B. IEEE C62.45: IEEE Guide for Surge Suppressor Testing (ANSI).
- C. NETA ATS: Acceptance Testing Specifications; Section 7.19, "Low-Voltage Surge Protection Devices".
- D. NEMA 250: Enclosures for Electrical Equipment (1000 Volts Maximum).
- E. NEMA WD 6: Wiring Device--Dimensional Requirements.
- F. NFPA 70: National Electrical Code.
- G. UL 486A: Wire Connectors and Soldering Lugs for Use with Copper Conductors.
- H. UL 1283: Electromagnetic Interference Filters.
- I. UL 1449 (3rd Edition Effective 9/29/2009):UL1149 4th Edition Effective 3/26/2016 Surge Protection Devices.

1.4 DEFINITIONS

A. Inominal: Nominal discharge current.

- B. MCOV: Maximum continuous operating voltage.
- C. Mode(s), also Modes of Protection: The pair of electrical connections where the VPR applies.
- D. SCCR: Short-circuit current rating.
- E. SPD: Surge protective device.
- F. VPR: Voltage protection rating.

1.5 SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 2. Copy of UL Category Code VZCA certification, as a minimum, listing the tested values for VPRs, Inominal ratings, MCOVs, type designations, OCPD requirements, model numbers, system voltages, and modes of protection.
 - 3. Shipping, installed, and operating weights; furnished specialties; and accessories.
- B. Product Certificates: Signed by manufacturers of surge protection devices, certifying that products furnished comply with the following testing and labeling requirements:
 - 1. UL 1283 certification by an OSHA approved NRTL.
 - 2. UL 1449 (3rd Edition Effective 9/29/2009) 4th Edition Effective 3/26/2016 listing and classification by an OSHA approved NRTL.
 - 3. NEMA LS-1 Single Pulse
- C. Field Test Reports: Written reports of tests specified in Part 3 of this Section. Include the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Failed test results and corrective action taken to achieve requirements.
- D. Maintenance Data: For surge protection devices to include in maintenance manuals specified in Division 1.
- E. Warranties: Special warranties specified in this Section.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

B. Sample Warranty: For manufacturer's special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For SPDs to include in maintenance manuals.

1.8 WARRANTY

- A. General Warranty: Special warranties specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.
- B. Special Warranty: Written warranty, executed by manufacturer agreeing to repair or replace components of surge suppressors that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Fifteen (15) years from date of Substantial Completion for TG and CGP series. Ten (10) years for CG series.

1.9 SERVICE CONDITIONS

- A. Rate surge protective devices for continuous operation under the following conditions, unless otherwise indicated:
 - 1. Maximum Continuous Operating Voltage: Not less than 115 percent of nominal system operating voltage.
 - 2. Operating Temperature: minus 20 deg F. to plus 120 deg F.
 - 3. Humidity: 0 to 85 percent, non-condensing.
 - 4. Altitude: Less than 20,000 feet above sea level.

PART 2 - PRODUCTS

2.1 GENERAL SPD REQUIREMENTS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Current Technology Inc.
- B. SPD with Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NFPA 70.

- D. Comply with UL 1449. 4th Edition Effective 3/26/2016.
- E. MCOV of the SPD shall be the nominal system voltage.
- F. Substitutes need to be submitted 10 days prior to bid date to the consulting engineer with a list of any deviations or exceptions from this specification.

2.2 PANEL SUPPRESSORS

- A. Comply with UL 1449 (3rd Edition) Type 1, tested at Inominal Rating: 20 kA.
- B. Per ANSI/IEEE C62.41.1-2002, C62.41.2-2002 and C62.45-2002, the SPD system shall be repetitive surge current capacity tested in every mode using a 1.2 x 50 μsec, 20KV open circuit voltage, 8 x 20 μsec, 200KA short circuit current ANSI/IEEE C62.41 Category C3 waveform at one minute interval. Minimum repetitive strikes with less than 10% degradation of clamping voltage shall be 3500 repetitive C3 strikes.
- C. Single Pulse Surge Testing: The maximum single-pulse surge current capacity per mode shall be verified through testing at an independent third party testing facility. Testing shall be conducted in each mode of the device and all tested modes shall be from the same test sample. This test shall include all components of the SPD system, including disconnects (if applicable) and fusing as a completed assembly. Individual component testing, module testing only, or subsystem testing of the SPD for compliance with this section will not be acceptable. Ratings based on the arithmetic sum of the ratings of the individual MOVs in a given mode are not acceptable. Testing that causes damage to the device, fuse operation, or voltage clamping performance degradation by more than 10% is not acceptable. The Single Pulse Surge Current Capacity shall be as below:
 - 1. 100kA per mode 'CGP model' (Main Switchboard).
- D. Filtering: The SPD shall provide a noise filtering system capable of attenuating noise levels produced by electromagnetic interference and radio frequency interference (EMI/RFI). The system's filtering characteristics shall be expressed in decibels (dB) of attenuation at no less than 8 points over a frequency spectrum between 50kHz and 100MHz. The noise filtering system shall also be listed to UL 1283 by an approved NRTC, as an electromagnetic interference filter.
- E. Fusing: Each MOV shall be individually fused and designed to operate only in the event of an MOV failure within the SPD. In the event of an MOV failure, the fuse will operate to remove the failed MOV from the circuit. The remaining MOV's and fuses will stay intact to handle subsequent surges. The fusing included with the SPD system shall be required to meet the above requirement, and shall be included with the above testing guidelines. Overcurrent fusing that limits the rated single pulse surge current of the SPD is not acceptable. Replaceable cartridge type per phase or per mode overcurrent fusing is not acceptable where there is more than one MOV per mode.

- F. Fault Current Capability: The unit shall be capable of interrupting up to a 200kA symmetrical fault current with 600VAC applied without the need of an upstream overcurrent protection device (fuse or circuit breaker).
- G. UL 1449 Voltage Protection Rating: The unit shall be UL 1449 3rd Edition 4th Edition Effective 3/26/2016Listed by a Nationally Recognized Testing Laboratory and shall be as follows for L-N, L-G, N-G, and L-L, modes: Note: the below values are for a 120/240 or 120/208 volt systems, for 277/480 volts the VPR's are 1200V L-N, 1200V L-G, 1000V N-G, 2000V L-L
 - 1. Main and Switchboard 'MDP': CGP80-120/208-3GY:
 - a. Line to Neutral: 700 V.
 - b. Line to Ground: 700 V.
 - c. Neutral to Ground: 700 V.
 - d. Line to Line: 1200 V.

SPD units shall provide protection status indication via a tri-colored LED per phase. The tricolored LED shall report when the SPD has reached 75% of remaining useful life, and 40% of remaining useful life.

- H. Monitoring Contacts: The unit shall come standard with Form C dry relay contacts (N.O. and N.C.) for remote monitoring capability, and internal audible alarm with silence button.
- I. Event Counter (Main Distribution Panel only): The unit shall come standard with a transient event counter with LCD panel display and reset button on the front cover.
- J. Enclosure: The unit shall be supplied in a NEMA type 1 enclosure rated for indoor applications.

PART 3 - EXECUTION

3.1 COORDINATION

A. Coordinate location of field-mounted surge suppressors to allow adequate clearances for maintenance.

3.2 INSTALLATION

A. Placing into Service: Do not energize or connect service entrance equipment, or power or lighting panelboards to their sources until the surge protective devices are installed and connected. Verify system voltage prior to energizing surge protective device. When the connection between the SPD and the Switchgear, Main Distribution Panel, Branch Distribution Panels exceeds more than 5 lineal feet, the contractor shall furnish and install a low impedance connection system from Current Technology, Model HPI, to maximize the performance of the SPD in mitigating the effects of transient voltage surges to the client's protected systems

- B. Comply with NECA 1.
- C. Install an OCPD or disconnect as required to comply with the UL listing of the SPD.
- D. Install SPDs with conductors between suppressor and points of attachment as short and straight as possible, and adjust circuit-breaker positions to achieve shortest and straightest leads. Do not splice and extend SPD leads unless specifically permitted by manufacturer. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
- E. Use crimped connectors and splices only. Wire nuts are unacceptable.
- F. Wiring:
 - 1. Power Wiring: Comply with wiring methods in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A

3.4 FIELD QUALITY CONTROL AND START-UP

- A. Perform the following the following field quality-control tests and inspections with the assistance of a factory-authorized service representative.
 - 1. Compare equipment nameplate data for compliance with Drawings and Specifications.
 - 2. Inspect anchorage, alignment, grounding, and clearances.
 - 3. Verify that electrical wiring installation complies with manufacturer's written installation requirements.
 - 4. After installing surge protective devices, but before electrical circuitry has been energized, test for compliance with requirements.
 - 5. Complete startup checks according to manufacturer's written instructions.
 - 6. Do not perform insulation-resistance tests of the distribution wiring equipment with SPDs installed. Disconnect SPDs before conducting insulation-resistance tests, and reconnect them immediately after the testing is over.
 - 7. Energize SPDs after power system has been energized, stabilized, and tested.
- B. Manufacturer's Field Service: Upon completion of installation and prior to energization, a factory-authorized local service representative shall provide product start-up testing services. The tests shall include:

- 1. On-Line Testing: Verification that all suppression and filtering paths are operating with 100% protection as well as verification of proper facility neutral-to-ground bond by measuring neutral-to-ground current and voltage.
- 2. Off-line testing: Impulse injection to verify the system tolerances as well as verification of proper facility neutral-to-ground bond. To be compared to factory benchmark test parameters supplied with each individual unit.
- C. The SPD manufacturer's technician shall perform a system checkout and start-up in the field to assure proper installation, operation and to initiate the warranty of the system. The technician will be required to do the following:
 - 1. Verify voltage clamping levels utilizing a diagnostic test kit, comparing factory readings to installed readings.
 - 2. Verify N-G connection.
 - 3. Record information to a product signature card for each product installed
- D. Documentation and Reporting:
 - 1. Prepare test and inspection reports.
 - a. A copy of the start-up test results and the factory benchmark testing results shall be provided to the Engineer and the Owner for confirmation of proper system function.
 - b. This letter shall also confirm that all neutral-to-ground bonds were verified through testing and visual inspection, and that all grounding bonds were observed to be in place.
 - c. Include Operation and Maintenance Manual.
- E. An SPD will be considered defective if it does not pass tests and inspections. Repair or replace malfunctioning units. Retest after repairs or replacements are made.

3.5 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to operate, and maintain surge protective devices.
 - 1. Train Owner's maintenance personnel on procedures and schedules for maintaining suppressors.
 - 2. Review data in maintenance manuals. Refer to Division 1.
 - 3. Schedule training with Owner, through Engineer, with at least seven days' advance notice.

END OF SECTION 264313

Fairfield County Auditor's Office Real Estate Department

SECTION 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Interior solid-state luminaires that use LED technology.
 - 2. Lighting fixture supports.
- B. Related Requirements:
 - 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color Rendering Index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating.
- E. LED: Light-emitting diode.
- F. Lumen: Measured output of lamp and luminaire, or both.
- G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

- 1. Arrange in order of luminaire designation.
- 2. Include data on features, accessories, and finishes.
- 3. Include physical description and dimensions of luminaires.
- 4. Include emergency lighting units, including batteries and chargers.
- 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
- 6. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing and Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps and accessories identical to those indicated for the lighting fixture as applied in this Project.
 - a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

1.5 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- B. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Product Certificates: For each type of luminaire.
- D. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

- 1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.
- 2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
- 3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
- B. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.
- C. Mockups: For interior lighting luminaires in room or module mockups, complete with power and control connections.
 - 1. Obtain Architect's approval of luminaires in mockups before starting installations.
 - 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
- B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE 7-10 Chapter 13.
- B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 - 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."
 - 2. Seismic Controls shall be provided for all Emergency Egress Luminaries.

2.2 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.
- C. Recessed Fixtures: Comply with NEMA LE 4.
- D. Bulb shape complying with ANSI C79.1.
- E. CRI of minimum 80. CCT of 4100 K.
- F. Rated lamp life of 50,000 hours.
- G. Lamps dimmable from 100 percent to 0 percent of maximum light output.
- H. Internal driver.
- I. Nominal Operating Voltage: 277 V ac.

2.3 MATERIALS

- A. Metal Parts:
 - 1. Free of burrs and sharp corners and edges.
 - 2. Sheet metal components shall be steel unless otherwise indicated.
 - 3. Form and support to prevent warping and sagging.

- B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- C. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp characteristics:
 - a. "USE ONLY" and include specific lamp type.
 - b. Lamp diameter, shape, size, wattage, and coating.
 - c. CCT and CRI for all luminaires.

2.4 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.5 LUMINAIRE FIXTURE SUPPORT COMPONENTS

- A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
- C. Wires: ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gage.
- D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.
- E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Install lamps in each luminaire.
- D. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning and relamping.
 - 3. Provide support for luminaire without causing deflection of ceiling or wall.
 - 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.
- E. Flush-Mounted Luminaire Support:
 - 1. Secured to outlet box.
 - 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 - 3. Trim ring flush with finished surface.
- F. Wall-Mounted Luminaire Support:
 - 1. Attached using through bolts and backing plates on either side of wall.
 - 2. Do not attach luminaires directly to gypsum board.
- G. Ceiling-Mounted Luminaire Support:
 - 1. Ceiling mount with two 5/32-inch- diameter aircraft cable supports.
 - 2. Ceiling mount with four-point pendant mount with 5/32-inch- diameter aircraft cable supports.
 - 3. Ceiling mount with hook mount.

- H. Suspended Luminaire Support:
 - 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 - 2. Stem-Mounted, Single-Unit Luminaires: Suspend with twin-stem hangers. Support with approved outlet box and accessories that hold stem and provide damping of luminaire oscillations. Support outlet box vertically to building structure using approved devices.
 - 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.
 - 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
- I. Ceiling-Grid-Mounted Luminaires:
 - 1. Secure to any required outlet box.
 - 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
- J. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

END OF SECTION 265119

Fairfield County Auditor's Office Real Estate Department

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 270526 - GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Grounding conductors.
 - 2. Grounding connectors.
 - 3. Grounding busbars.
 - 4. Grounding rods.
 - 5. Grounding labeling.

1.3 DEFINITIONS

- A. BCT: Bonding conductor for telecommunications.
- B. EMT: Electrical metallic tubing.
- C. TGB: Telecommunications grounding busbar.
- D. TMGB: Telecommunications main grounding busbar.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For communications equipment room signal reference grid. Include plans, elevations, sections, details, and attachments to other work.

1.5 INFORMATIONAL SUBMITTALS

A. As-Built Data: Plans showing as-built locations of grounding and bonding infrastructure, including the following:

- 1. Ground rods.
- 2. Ground and roof rings.
- 3. BCT, TMGB, TGBs, and routing of their bonding conductors.
- B. Field quality-control reports.
- 1.6 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
- 1.7 QUALITY ASSURANCE
 - A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Installation Supervision: Installation shall be under the direct supervision of ITS Installer 2, who shall be present at all times when Work of this Section is performed at Project site.

PART 2 - PRODUCTS

- 2.1 SYSTEM COMPONENTS
 - A. Comply with J-STD-607-A.

2.2 CONDUCTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Harger Lightning & Grounding.
 - 2. Panduit Corp.
 - 3. TE Connectivity Ltd.
- B. Comply with UL 486A-486B.
- C. Insulated Conductors: Stranded copper wire, green or green with yellow stripe insulation, insulated for 600 V, and complying with UL 83.
 - 1. Ground wire for custom-length equipment ground jumpers shall be No. 6 AWG, 19strand, UL-listed, Type THHN wire.
 - 2. Cable Tray Equipment Grounding Wire: No. 6 AWG.

- D. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmils, 14 strands of No. 17 AWG conductor, and 1/4 inch in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Tinned-copper tape, braided conductors terminated with two-hole copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

2.3 CONNECTORS

- A. Irreversible connectors listed for the purpose. Listed by an NRTL as complying with NFPA 70 for specific types, sizes, and combinations of conductors and other items connected. Comply with UL 486A-486B.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Burndy; Part of Hubbell Electrical Systems.
 - 2. Chatsworth Products, Inc.
 - 3. Harger Lightning & Grounding.
 - 4. Panduit Corp.
 - 5. TE Connectivity Ltd.
- C. Compression Wire Connectors: Crimp-and-compress connectors that bond to the conductor when the connector is compressed around the conductor. Comply with UL 467.
 - 1. Electroplated tinned copper, C and H shaped.
- D. Signal Reference Grid Connectors: Combination of compression wire connectors, access floor grounding clamps, bronze U-bolt grounding clamps, and copper split-bolt connectors, designed for the purpose.
- E. Busbar Connectors: Cast silicon bronze, solderless compression or exothermic-type, mechanical connector; with a long barrel and two holes spaced on 5/8- or 1-inch centers for a two-bolt connection to the busbar.
- F. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.4 GROUNDING BUSBARS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Chatsworth Products, Inc.
 - 2. Harger Lightning & Grounding.
 - 3. Panduit Corp.
- B. TMGB: Predrilled, wall-mounted, rectangular bars of hard-drawn solid copper, 1/4 by 4 inches in cross section, length as indicated on Drawings. The busbar shall be NRTL listed for use as TMGB and shall comply with J-STD-607-A.
 - 1. Predrilling shall be with holes for use with lugs specified in this Section.
 - 2. Mounting Hardware: Stand-off brackets that provide a 4-inch clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
 - 3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.
- C. Rack and Cabinet Grounding Busbars: Rectangular bars of hard-drawn solid copper, accepting conductors ranging from No. 14 to No. 2/0 AWG, NRTL listed as complying with UL 467, and complying with J-STD-607-A. Predrilling shall be with holes for use with lugs specified in this Section.
 - 1. Cabinet-Mounted Busbar: Terminal block, with stainless-steel or copper-plated hardware for attachment to the cabinet.
 - 2. Rack-Mounted Horizontal Busbar: Designed for mounting in 19- or 23-inch equipment racks. Include a copper splice bar for transitioning to an adjoining rack, and stainless-steel or copper-plated hardware for attachment to the rack.
 - 3. Rack-Mounted Vertical Busbar: 72 or 36 inches stainless-steel or copper-plated hardware for attachment to the rack.

2.5 GROUND RODS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Harger Lightning & Grounding.
 - 2. TE Connectivity Ltd.
- B. Ground Rods: Copper-clad steel, sectional type; 3/4 inch by 10 feet in diameter.

2.6 LABELING

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Brother International Corporation.
 - 2. HellermannTyton.
 - 3. Panduit Corp.
- B. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
- C. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the ac grounding electrode system and equipment grounding for compliance with requirements for maximum ground-resistance level and other conditions affecting performance of grounding and bonding of the electrical system.
- B. Inspect the test results of the ac grounding system measured at the point of BCT connection.
- C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- D. Proceed with connection of the BCT only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Bonding shall include the ac utility power service entrance, the communications cable entrance, and the grounding electrode system. The bonding of these elements shall form a loop so that each element is connected to at least two others.
- B. Comply with NECA 1.
- C. Comply with J-STD-607-A.

3.3 APPLICATION

- A. Conductors: Install solid conductor for No. 8 AWG and smaller and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
 - 1. The bonding conductors between the TGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG.
 - 2. The bonding conductors between the TMGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG.
- B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2 AWG minimum.
- C. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.
- D. Conductor Support:
 - 1. Secure grounding and bonding conductors at intervals of not less than 36 inches
- E. Grounding and Bonding Conductors:
 - 1. Install in the straightest and shortest route between the origination and termination point, and no longer than required. The bend radius shall not be smaller than eight times the diameter of the conductor. No one bend may exceed 90 degrees.
 - 2. Install without splices.
 - 3. Support at not more than 36-inch intervals.
 - 4. Install grounding and bonding conductors in 3/4-inch PVC conduit until conduit enters a telecommunications room. The grounding and bonding conductor pathway through a plenum shall be in EMT. Conductors shall not be installed in EMT unless otherwise indicated.
 - a. If a grounding and bonding conductor is installed in ferrous metallic conduit, bond the conductor to the conduit using a grounding bushing that complies with requirements in Section 270528 "Pathways for Communications Systems," and bond both ends of the conduit to a TGB.

3.4 GROUNDING ELECTRODE SYSTEM

A. The BCT between the TMGB and the ac service equipment ground shall not be smaller than No. 1/0 AWG.

3.5 GROUNDING BUSBARS

- A. Indicate locations of grounding busbars on Drawings. Install busbars horizontally, on insulated spacers 2 inches minimum from wall, 12 inches above finished floor unless otherwise indicated.
- B. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

3.6 CONNECTIONS

- A. Bond metallic equipment in a telecommunications equipment room to the grounding busbar in that room, using equipment grounding conductors not smaller than No. 6 AWG.
- B. Stacking of conductors under a single bolt is not permitted when connecting to busbars.
- C. Assemble the wire connector to the conductor, complying with manufacturer's written instructions and as follows:
 - 1. Use crimping tool and the die specific to the connector.
 - 2. Pretwist the conductor.
 - 3. Apply an antioxidant compound to all bolted and compression connections.
- D. Primary Protector: Bond to the TMGB with insulated bonding conductor.
- E. Interconnections: Interconnect all TGBs with the TMGB with the telecommunications backbone conductor. If more than one TMGB is installed, interconnect TMGBs using the grounding equalizer conductor. The telecommunications backbone conductor and grounding equalizer conductor size shall not be less than 2 kcmils/linear foot of conductor length, up to a maximum size of No. 3/0 AWG unless otherwise indicated.
- F. Telecommunications Enclosures and Equipment Racks: Bond metallic components of enclosures to the telecommunications bonding and grounding system. Install vertically mounted rack grounding busbar unless the enclosure and rack are manufactured with the busbar. Bond the equipment grounding busbar to the TGB No. 2 AWG bonding conductors.
- G. Structural Steel: Where the structural steel of a steel frame building is readily accessible within the room or space, bond each TGB and TMGB to the vertical steel of the building frame.
- H. Electrical Power Panelboards: Where an electrical panelboard for telecommunications equipment is located in the same room or space, bond each TGB to the ground bar of the panelboard.
- I. Shielded Cable: Bond the shield of shielded cable to the TGB in communications rooms and spaces. Comply with TIA/EIA-568-B.1 and TIA/EIA-568-B.2 when grounding screened, balanced, twisted-pair cables.

- J. Rack- and Cabinet-Mounted Equipment: Bond powered equipment chassis to the cabinet or rack grounding bar. Power connection shall comply with NFPA 70; the equipment grounding conductor in the power cord of cord- and plug-connected equipment shall be considered as a supplement to bonding requirements in this Section.
- K. Access Floors: Bond all metal parts of access floors to the TGB.
- L. Equipment Room Signal Reference Grid: Provide a low-impedance path between telecommunications cabinets, equipment racks, and the reference grid, using No. 6 AWG bonding conductors.
 - 1. Install the conductors in grid pattern on 4-foot centers, allowing bonding of one pedestal from each access floor tile.
 - 2. Bond the TGB of the equipment room to the reference grid at two or more locations.
 - 3. Bond all conduits and piping entering the equipment room to the TGB at the perimeter of the room.

3.7 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

- A. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.
- B. Comply with IEEE C2 grounding requirements.
- C. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches extends above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.
- D. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect grounding conductors to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.

3.8 IDENTIFICATION

- A. Labels shall be preprinted or computer-printed type.
 - 1. Label TMGB(s) with "fs-TMGB," where "fs" is the telecommunications space identifier for the space containing the TMGB.

- 2. Label TGB(s) with "fs-TGB," where "fs" is the telecommunications space identifier for the space containing the TGB.
- 3. Label the BCT and each telecommunications backbone conductor at its attachment point: "WARNING! TELECOMMUNICATIONS BONDING CONDUCTOR. DO NOT REMOVE OR DISCONNECT!"

3.9 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 2. Test the bonding connections of the system using an ac earth ground-resistance tester, taking two-point bonding measurements in each telecommunications equipment room containing a TMGB and a TGB and using the process recommended by BICSI TDMM. Conduct tests with the facility in operation.
 - a. Measure the resistance between the busbar and the nearest available grounding electrode. The maximum acceptable value of this bonding resistance is 100 milliohms.
 - Test for ground loop currents using a digital clamp-on ammeter, with a full-scale of not more than 10 A, displaying current in increments of 0.01 A at an accuracy of plus/minus 2.0 percent.
 - a. With the grounding infrastructure completed and the communications system electronics operating, measure the current in every conductor connected to the TMGB and in each TGB. Maximum acceptable ac current level is 1 A.
- C. Excessive Ground Resistance: If resistance to ground at the BCT exceeds 5 ohms, notify Architect promptly and include recommendations to reduce ground resistance.
- D. Grounding system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION 270526

Fairfield County Auditor's Office Real Estate Department

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 270528 - PATHWAYS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Metal conduits and fittings.
 - 2. Nonmetallic conduits and fittings.
 - 3. Optical-fiber-cable pathways and fittings.
 - 4. Boxes, enclosures, and cabinets.
 - 5. Handholes and boxes for exterior underground cabling.
 - B. Related Requirements:
 - 1. Section 260533 "Raceways and Boxes for Electrical Systems" for conduits, wireways, surface raceways, boxes, enclosures, cabinets, handholes, and faceplate adapters serving electrical systems.

1.3 DEFINITIONS

- A. ARC: Aluminum rigid conduit.
- B. GRC: Galvanized rigid steel conduit.
- C. IMC: Intermediate metal conduit.
- 1.4 ACTION SUBMITTALS
 - A. Product Data: For surface pathways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Pathway routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 - 1. Structural members in paths of pathway groups with common supports.
 - 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
- B. Seismic Qualification Certificates: For pathway racks, enclosures, cabinets, equipment racks and their mounting provisions, including those for internal components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which certification is based and their installation requirements.
 - 4. Detailed description of conduit support devices and interconnections on which certification is based and their installation requirements.
- C. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems; a part of Atkore International.
 - 2. Allied Tube & Conduit; a part of Atkore International.
 - 3. Anamet Electrical, Inc.
 - 4. Electri-Flex Company.
 - 5. O-Z/Gedney; a brand of Emerson Industrial Automation.
 - 6. Picoma Industries, Inc.
 - 7. Republic Conduit.
 - 8. Robroy Industries.
 - 9. Southwire Company.
 - 10. Thomas & Betts Corporation; A Member of the ABB Group.
 - 11. Western Tube and Conduit Corporation.
 - 12. Wheatland Tube Company.
- B. General Requirements for Metal Conduits and Fittings:

- 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 2. Comply with TIA-569-B.
- C. GRC: Comply with ANSI C80.1 and UL 6.
- D. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch, minimum.
- E. EMT: Comply with ANSI C80.3 and UL 797.
- F. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 - 1. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: Compression.
 - 2. Expansion Fittings: PVC or steel to match conduit type, complying with UL-467, rated for environmental conditions where installed, and including flexible external bonding jumper.
 - 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.
- G. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems; a part of Atkore International.
 - 2. Allied Tube & Conduit; a part of Atkore International.
 - 3. Anamet Electrical, Inc.
 - 4. CANTEX INC.
 - 5. Carlon; a brand of Thomas & Betts Corporation.
 - 6. CertainTeed Corporation.
 - 7. Condux International, Inc.
 - 8. Electri-Flex Company.
 - 9. Kraloy.
 - 10. Niedax Inc.
 - 11. RACO; Hubbell.

- 12. Thomas & Betts Corporation; A Member of the ABB Group.
- B. General Requirements for Nonmetallic Conduits and Fittings:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with TIA-569-B.
- C. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
- D. RTRC: Comply with UL 1684A and NEMA TC 14.
- E. Fittings for RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

2.3 OPTICAL-FIBER-CABLE PATHWAYS AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Alpha Wire.
 - 2. Carlon; a brand of Thomas & Betts Corporation.
 - 3. Dura-Line.
 - 4. Endot Industries Inc.
 - 5. IPEX USA LLC.
- B. Description: Comply with UL 2024; flexible-type pathway, approved for general-use installation unless otherwise indicated.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with TIA-569-B.

2.4 BOXES, ENCLOSURES, AND CABINETS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Adalet.
 - 2. Carlon; a brand of Thomas & Betts Corporation.
 - 3. Crouse-Hinds, an Eaton business.
 - 4. EGS/Appleton Electric.
 - 5. Erickson Electrical Equipment Company.
 - 6. FSR Inc.
 - 7. Hoffman; a brand of Pentair Equipment Protection.
 - 8. Milbank Manufacturing Co.
- 9. MonoSystems, Inc.
- 10. O-Z/Gedney; a brand of Emerson Industrial Automation.
- 11. Quazite: Hubbell Power Systems, Inc.
- 12. RACO; Hubbell.
- 13. Robroy Industries.
- 14. Spring City Electrical Manufacturing Company.
- 15. Stahlin Non-Metallic Enclosures.
- 16. Thomas & Betts Corporation; A Member of the ABB Group.
- 17. Wiremold / Legrand.
- B. General Requirements for Boxes, Enclosures, and Cabinets:
 - 1. Comply with TIA-569-B.
 - 2. Boxes, enclosures and cabinets installed in wet locations shall be listed for use in wet locations.
- C. Sheet-Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- E. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- F. Metal Floor Boxes:
 - 1. Material: sheet metal.
 - 2. Type: Fully adjustable.
 - 3. Shape: Rectangular.
 - 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- H. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum or galvanized, cast iron with gasketed cover.
- I. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.
- J. Gangable boxes are prohibited.
- K. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.
- L. Cabinets:
 - 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.

- 2. Hinged door in front cover with flush latch and concealed hinge.
- 3. Key latch to match panelboards.
- 4. Metal barriers to separate wiring of different systems and voltage.
- 5. Accessory feet where required for freestanding equipment.
- 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.5 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND CABLING

- A. General Requirements for Handholes and Boxes:
 - 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 - 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. Comply with TIA-569-B.
- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armorcast Products Company.
 - b. Carson Industries LLC.
 - c. NewBasis.
 - d. Oldcastle Precast, Inc.
 - e. Quazite: Hubbell Power Systems, Inc.
 - 2. Standard: Comply with SCTE 77.
 - 3. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
 - 4. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 - 5. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 6. Cover Legend: Molded lettering, "COMMUNICATIONS.".
 - 7. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
 - 8. Handholes 12 Inches Wide by 24 Inches Long and Larger: Have inserts for cable racks and pulling-in irons installed before concrete is poured.
- C. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with frame and covers of hot-dip galvanized-steel diamond plate.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Armorcast Products Company.
- b. Carson Industries LLC.
- c. NewBasis.
- d. Nordic Fiberglass, Inc.
- e. Oldcastle Precast, Inc.
- f. Quazite: Hubbell Power Systems, Inc.
- 2. Standard: Comply with SCTE 77.
- 3. Color of Frame and Cover: Gray.
- 4. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
- 5. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
- 6. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- 7. Cover Legend: Molded lettering, "COMMUNICATIONS.".
- 8. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
- 9. Handholes 12 Inches Wide by 24 Inches Long and Larger: Have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.6 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

- A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by an independent testing agency.
 - 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PATHWAY APPLICATION

- A. Outdoors: Apply pathway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC, RNC, Type EPC-40-PVC.
 - 2. Concealed Conduit, Aboveground: GRC, RNC, Type EPC-40-PVC.
 - 3. Underground Conduit: RNC, Type EPC-40-PVC, concrete encased.
 - 4. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Indoors: Apply pathway products as specified below unless otherwise indicated:

- 1. Exposed, Not Subject to Physical Damage: EMT.
- 2. Exposed, Not Subject to Severe Physical Damage: EMT.
- 3. Exposed and Subject to Severe Physical Damage: GRC. Pathway locations include the following:
 - a. Mechanical rooms.
- 4. Concealed in Ceilings and Interior Walls and Partitions: EMT RNC, Type EPC-40-PVC.
- 5. Damp or Wet Locations: GRC.
- 6. Pathways for Optical-Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, optical-fiber-cable pathway Plenum-type, communications-cable pathway, EMT.
- 7. Pathways for Optical-Fiber or Communications-Cable Risers in Vertical Shafts: Risertype, optical-fiber-cable pathway Riser-type, communications-cable pathway, EMT.
- 8. Pathways for Concealed General-Purpose Distribution of Optical-Fiber or Communications Cable: EMT.
- 9. Boxes and Enclosures: NEMA 250 Type 1, except use NEMA 250 Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.
- C. Minimum Pathway Size: 3/4-inch trade size. Minimum size for optical-fiber cables is 1 inch.
- D. Pathway Fittings: Compatible with pathways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 - 3. EMT: Use compression, steel fittings. Comply with NEMA FB 2.10.
- E. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

- A. Comply with NECA 1, NECA 101, and TIA-569-B for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum pathways. Comply with NFPA 70 limitations for types of pathways allowed in specific occupancies and number of floors.
- B. Keep pathways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal pathway runs above water and steam piping.
- C. Complete pathway installation before starting conductor installation.

- D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- E. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- F. Install no more than the equivalent of three 90-degree bends in any pathway run. Support within 12 inches of changes in direction. Utilize long radius ells for all optical-fiber cables.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- H. Support conduit within 12 inches of enclosures to which attached.
- I. Pathways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure pathways to reinforcement at maximum 10-foot intervals.
 - 2. Arrange pathways to cross building expansion joints at right angles with expansion fittings.
 - 3. Arrange pathways to keep a minimum of 1 inch of concrete cover in all directions.
 - 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 - 5. Change from ENT to GRC before rising above floor.
- J. Stub-ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for pathways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of pathway and fittings before making up joints. Follow compound manufacturer's written instructions.
- L. Coat field-cut threads on PVC-coated pathway with a corrosion-preventing conductive compound prior to assembly.
- M. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install insulated bushings on conduits terminated with locknuts.
- N. Install pathways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- O. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

- P. Cut conduit perpendicular to the length. For conduits of 2-inch trade size and larger, use roll cutter or a guide to ensure cut is straight and perpendicular to the length.
- Q. Install pull wires in empty pathways. Use polypropylene or monofilament plastic line with not less than 200-lbtensile strength. Leave at least 12 inchesof slack at each end of pull wire. Cap underground pathways designated as spare above grade alongside pathways in use.
- R. Pathways for Optical-Fiber and Communications Cable: Install pathways, metal and nonmetallic, rigid and flexible, as follows:
 - 1. 3/4-Inch Trade Size and Smaller: Install pathways in maximum lengths of 50 feet.
 - 2. 1-Inch Trade Size and Larger: Install pathways in maximum lengths of 75 feet.
 - 3. Install with a maximum of two 90-degree bends or equivalent for each length of pathway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.
- S. Install pathway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed pathways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install pathway sealing fittings according to NFPA 70.
- T. Install devices to seal pathway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all pathways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where an underground service pathway enters a building or structure.
 - 3. Where otherwise required by NFPA 70.
- U. Comply with manufacturer's written instructions for solvent welding PVC conduit and fittings.
- V. Expansion-Joint Fittings:
 - 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F, and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 - 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.

- c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
- 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
- 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
- 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- W. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- X. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surface to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- Y. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- Z. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- AA. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- BB. Set metal floor boxes level and flush with finished floor surface.
- CC. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

- A. Direct-Buried Conduit:
 - 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches in nominal diameter.
 - 2. Install backfill as specified in Section 312000 "Earth Moving."
 - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled

backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."

- 4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
- 5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
 - b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
- 6. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.
- D. Install handholes with bottom below frost line, below grade.
- E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.
- F. Field cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR COMMUNICATIONS PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 270544 "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage or deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 270528

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 271100 - COMMUNICATIONS EQUIPMENT ROOM FITTINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Telecommunications mounting elements.
 - 2. Backboards.
 - 3. Grounding.
 - B. Related Requirements:
 - 1. Section 271300 "Communications Backbone Cabling" for voice and data cabling associated with system panels and devices.
 - 2. Section 271500 "Communications Horizontal Cabling" for voice and data cabling associated with system panels and devices.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. LAN: Local area network.
- C. RCDD: Registered Communications Distribution Designer.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for equipment racks and cabinets.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For communications equipment room fittings. Include plans, elevations, sections, details, and attachments to other work.

- 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 2. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
- 3. Grounding: Indicate location of grounding bus bar and its mounting detail showing standoff insulators and wall mounting brackets.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.
- B. Seismic Qualification Certificates: For equipment frames from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. Base certification on the maximum number of components capable of being mounted in each rack type. Identify components on which certification is based.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings shall be under the direct supervision of RCDD.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Equipment frames shall withstand the effects of earthquake motions determined according to ASCE 7-10 Chapter 13.
 - 1. Seismic Controls shall be provided as required for all Equipment Frames.

2.2 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches. Comply with requirements for plywood backing panels specified in Section 061000 "Rough Carpentry."

- B. Telecommunications Main Bus Bar:
 - 1. Connectors: Mechanical type, cast silicon bronze, solderless exothermic-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
 - 2. Ground Bus Bar: Copper, minimum 1/4 inch thick by 4 inches wide with 9/32-inch holes spaced 1-1/8 inches apart.
 - 3. Stand-Off Insulators: Comply with UL 891 for use in switchboards, 600 V. Lexan or PVC, impulse tested at 5000 V.
- C. Comply with J-STD-607-A.

2.3 LABELING

A. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

- A. Contact telecommunications service provider and arrange for installation of demarcation point, protected entrance terminals, and a housing when so directed by service provider.
- B. Comply with requirements in Section 270528 "Pathways for Communications Systems" for materials and installation requirements for underground/buried pathways.

3.2 INSTALLATION

- A. Comply with NECA 1.
- B. Comply with BICSI TDMM for layout and installation of communications equipment rooms.
- C. Owner shall provide racks, patch panels, switches, power strip, and UPS units for the IT Room.
- D. Contractor provides, conduits and CAT 6 cabling and terminates in the owners rack per owners instructions.
- E. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
- F. Coordinate layout and installation of communications equipment with Owner's telecommunications and LAN equipment and service suppliers. Coordinate service entrance arrangement with local exchange carrier.

- 1. Meet jointly with telecommunications and LAN equipment suppliers, local exchange carrier representatives, and Owner to exchange information and agree on details of equipment arrangements and installation interfaces.
- 2. Record agreements reached in meetings and distribute them to other participants.
- 3. Adjust arrangements and locations of distribution frames, cross-connects, and patch panels in equipment rooms to accommodate and optimize arrangement and space requirements of telephone switch and LAN equipment.
- 4. Adjust arrangements and locations of equipment with distribution frames, crossconnects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in the equipment room.
- G. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.

3.3 SLEEVE AND SLEEVE SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 270544 "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

3.4 FIRESTOPPING

- A. Comply with requirements in Section 078413 "Penetration Firestopping."
- B. Comply with TIA-569-B, Annex A, "Firestopping."
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 GROUNDING

- A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. Comply with J-STD-607-A.
- C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
- D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

1. Bond the shield of shielded cable to the grounding bus bar in communications rooms and spaces.

3.6 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
- B. Comply with requirements in Section 099123 "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.
- C. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 2 level of administration including optional identification requirements of this standard.
- D. Labels shall be preprinted or computer-printed type.

END OF SECTION 271100

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 271300 - COMMUNICATIONS BACKBONE CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Pathways.
 - 2. UTP cable.
 - 3. 50/125-micrometer, optical fiber cabling.
 - 4. Coaxial cable.
 - 5. Cable connecting hardware, patch panels, and cross-connects.
 - 6. Cabling identification products.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
- C. EMI: Electromagnetic interference.
- D. IDC: Insulation displacement connector.
- E. LAN: Local area network.
- F. RCDD: Registered Communications Distribution Designer.
- G. UTP: Unshielded twisted pair.

1.4 BACKBONE CABLING DESCRIPTION

A. Backbone cabling system shall provide interconnections between communications equipment rooms, main terminal space, and entrance facilities in the telecommunications cabling system structure. Cabling system consists of backbone cables, intermediate and main cross-connects,

mechanical terminations, and patch cords or jumpers used for backbone-to-backbone cross-connection.

B. Backbone cabling cross-connects may be located in communications equipment rooms or at entrance facilities. Bridged taps and splitters shall not be used as part of backbone cabling.

1.5 PERFORMANCE REQUIREMENTS

A. General Performance: Backbone cabling system shall comply with transmission standards in TIA/EIA-568-B.1, when tested according to test procedures of this standard.

1.6 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. For coaxial cable, include the following installation data for each type used:
 - a. Nominal OD.
 - b. Minimum bending radius.
 - c. Maximum pulling tension.
- B. Shop Drawings:
 - 1. System Labeling Schedules: Electronic copy of labeling schedules in Microsoft Excel software.
 - 2. Cabling administration drawings and printouts.
 - 3. Wiring diagrams to show typical wiring schematics including the following:
 - a. Cross-connects.
 - b. Patch panels.
 - c. Patch cords.
 - 4. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.

1.7 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.
- B. Source quality-control reports.
- C. Field quality-control reports.
- D. Maintenance Data: For splices and connectors to include in maintenance manuals.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings, Cabling Administration Drawings, and field testing program development by an RCDD.
 - 2. Installation Supervision: Installation shall be under the direct supervision of Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Telecommunications Pathways and Spaces: Comply with TIA/EIA-569-A.
- D. Grounding: Comply with ANSI-J-STD-607-A.
- 1.9 DELIVERY, STORAGE, AND HANDLING
 - A. Test cables upon receipt at Project site.
 - 1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical fiber flashlight or optical loss test set.
 - 2. Test optical fiber cable while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector, including the loss value of each. Retain test data and include the record in maintenance data.
 - 3. Test each pair of UTP cable for open and short circuits.

1.10 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.11 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

PART 2 - PRODUCTS

2.1 PATHWAYS

- A. General Requirements: Comply with TIA/EIA-569-A.
- B. Cable Trays: Comply with requirements in Section 270536 Cable Trays for Communications Systems.
- C. Conduit and Boxes: Comply with requirements in Section 260533 "Raceway and Boxes for Electrical Systems."
 - 1. Outlet boxes shall be no smaller than 2-1/8 inches wide, 4 inches high, and 2-1/2 inches deep.

2.2 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches. Comply with requirements in Section 061000 "Rough Carpentry" for plywood backing panels.

2.3 UTP CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Premise Wiring.
 - 2. 3M.
 - 3. AMP NETCONNECT; a TE Connectivity Ltd. company.
 - 4. Belden CDT Networking Division/NORDX.
 - 5. Berk-Tek Leviton; a Nexans/Leviton alliance.
 - 6. CommScope, Inc.
 - 7. Draka USA.
 - 8. General Cable; General Cable Corporation.
 - 9. Genesis Cable Products; Honeywell International, Inc.
 - 10. Mohawk; a division of Belden Networking, Inc.
 - 11. Superior Essex Inc.
 - 12. SYSTIMAX Solutions; a CommScope Inc. brand.
- B. Description: 100-ohm, four-pair UTP, formed into 25-pair, binder groups covered with a blue thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, Category 6.

- 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG.
 - b. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 - c. Communications, Riser Rated: Type CMR, complying with UL 1666.
 - d. Communications, Limited Purpose: Type CMX.
 - e. Multipurpose: Type MP or MPG.
 - f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 - g. Multipurpose, Riser Rated: Type MPR, complying with UL 1666.

2.4 UTP CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Leviton Manufacturing Co., Inc.
- B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.
- C. Connecting Blocks: 110-style IDC for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.
- D. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.
- E. Patch Cords: Factory-made, four-pair cables in 48-inch lengths; terminated with eight-position modular plug at each end.
 - 1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.

2.5 OPTICAL FIBER CABLE

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. 3M.
 - 2. AMP NETCONNECT; a TE Connectivity Ltd. company.
 - 3. Belden CDT Networking Division/NORDX.
 - 4. Berk-Tek Leviton; a Nexans/Leviton alliance.
 - 5. CommScope, Inc.

- 6. Corning Cable Systems.
- 7. CSI Technologies Inc.
- 8. General Cable; General Cable Corporation.
- 9. Mohawk; a division of Belden Networking, Inc.
- 10. Superior Essex Inc.
- 11. SYSTIMAX Solutions; a CommScope Inc. brand.
- B. Description: Multimode, 50/125-micrometer, 24-fiber, nonconductive, tight buffer, optical fiber cable.
 - 1. Comply with ICEA S-83-596 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.3 for performance specifications.
 - 3. Comply with TIA-492AAAB for detailed specifications.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 - a. General Purpose, Nonconductive: Type OFN or OFNG.
 - b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - c. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 - d. General Purpose, Conductive: Type OFC or OFCG.
 - e. Plenum Rated, Conductive: Type OFCP, complying with NFPA 262.
 - f. Riser Rated, Conductive: Type OFCR, complying with UL 1666.
 - 5. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
 - 6. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.
- C. Jacket:
 - 1. Jacket Color: Aqua for 50/125-micrometer cable.
 - 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-C.
 - 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

2.6 OPTICAL FIBER CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Leviton Manufacturing Co., Inc.
- B. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.
 - 1. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.
- C. Patch Cords: Factory-made, dual-fiber cables in 36-inch lengths.

- D. Cable Connecting Hardware:
 - 1. Comply with Optical Fiber Connector Intermateability Standards (FOCIS) specifications of TIA-604-2-B, TIA-604-3-B, and TIA/EIA-604-12. Comply with TIA/EIA-568-B.3.
 - 2. Quick-connect, simplex and duplex, Type SC or Type LC connectors. Insertion loss not more than 0.75 dB.
 - 3. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.7 COAXIAL CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Alpha Wire.
 - 2. Belden CDT Networking Division/NORDX.
 - 3. Coleman Cable, Inc.
 - 4. CommScope, Inc.
 - 5. Draka USA.
- B. Cable Characteristics: Broadband type, recommended by cable manufacturer specifically for broadband data transmission applications. Coaxial cable and accessories shall have 75-ohm nominal impedance with a return loss of 20 dB maximum from 7 to 806 MHz.
- C. RG-11/U: NFPA 70, Type CATV.
 - 1. No. 14 AWG, solid, copper-covered steel conductor.
 - 2. Gas-injected, foam-PE insulation.
 - 3. Double shielded with 100 percent aluminum polyester tape and 60 percent aluminum braid.
 - 4. Jacketed with sunlight-resistant, black PVC or PE.
 - 5. Suitable for outdoor installations in ambient temperatures ranging from minus 40 to plus 85 deg C.
- D. RG59/U: NFPA 70, Type CATVR.
 - 1. No. 20 AWG, solid, silver-plated, copper-covered steel conductor.
 - 2. Gas-injected, foam-PE insulation.
 - 3. Triple shielded with 100 percent aluminum polyester tape and 95 percent aluminum braid; covered by aluminum foil with grounding strip.
 - 4. Color-coded PVC jacket.
- E. RG-6/U: NFPA 70, Type CATV or CM.
 - 1. No. 16 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 60 percent aluminum braid.

- 3. Jacketed with black PVC or PE.
- 4. Suitable for indoor installations.
- F. RG59/U: NFPA 70, Type CATV.
 - 1. No. 20 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - 2. Double shielded with 100 percent aluminum polyester tape and 40 percent aluminum braid.
 - 3. PVC jacket.
- G. RG59/U (Plenum Rated): NFPA 70, Type CMP.
 - 1. No. 20 AWG, solid, copper-covered steel conductor; foam fluorinated ethylene propylene insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 65 percent aluminum braid.
 - 3. Copolymer jacket.
- H. NFPA and UL compliance, listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1655 and with NFPA 70 "Radio and Television Equipment" and "Community Antenna Television and Radio Distribution" Articles. Types are as follows:
 - 1. CATV Cable: Type CATV.
 - 2. CATV Plenum Rated: Type CATVP, complying with NFPA 262.
 - 3. CATV Riser Rated: Type CATVR, complying with UL 1666.
 - 4. CATV Limited Rating: Type CATVX.
- 2.8 GROUNDING
 - A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.
 - B. Comply with ANSI-J-STD-607-A.

2.9 IDENTIFICATION PRODUCTS

- A. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
- 2.10 SOURCE QUALITY CONTROL
 - A. Factory test cables on reels according to TIA/EIA-568-B.1.
 - B. Factory test UTP cables according to TIA/EIA-568-B.2.

- C. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- D. Cable will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider. Fiber optic 12 strand multimode fibre and 25 pair copper from DMARK up to IT room rack.

3.2 WIRING METHODS

- A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters. Conceal raceway and cables except in unfinished spaces.
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 - 2. Comply with requirements for raceways and boxes specified in Section 260533 "Raceway and Boxes for Electrical Systems."
- B. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

3.3 INSTALLATION OF PATHWAYS

- A. Cable Trays: Comply with NEMA VE 2 and TIA/EIA-569-A.
- B. Comply with requirements for demarcation point, pathways, cabinets, and racks specified in Section 271100 "Communications Equipment Room Fittings." Drawings indicate general arrangement of pathways and fittings.
- C. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.
- D. Comply with requirements in Section 260533 "Raceway and Boxes for Electrical Systems" for installation of conduits and wireways.
- E. Install manufactured conduit sweeps and long-radius elbows whenever possible.

- F. Pathway Installation in Communications Equipment Rooms:
 - 1. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed, or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
 - 2. Install cable trays to route cables if conduits cannot be located in these positions.
 - 3. Secure conduits to backboard when entering room from overhead.
 - 4. Extend conduits 3 inches above finished floor.
 - 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.
- G. Backboards: Install backboards with 96-inch dimension vertical. Butt adjacent sheets tightly, and form smooth gap-free corners and joints.

3.4 INSTALLATION OF CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - 4. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
 - 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 6. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
 - 7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Use lacing bars and distribution spools.
 - 8. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 - 9. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 - 10. In the communications equipment room, install a 10-foot-long service loop on each end of cable.
 - 11. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
- C. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.

- 2. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.
- D. Optical Fiber Cable Installation:
 - 1. Comply with TIA/EIA-568-B.3.
 - 2. Cable may be terminated on connecting hardware that is rack or cabinet mounted.
- E. Open-Cable Installation:
 - 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - 2. Suspend UTP cable not in a wireway or pathway, a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- F. Installation of Cable Routed Exposed under Raised Floors:
 - 1. Install plenum-rated cable only.
 - 2. Install cabling after the flooring system has been installed in raised floor areas.
 - 3. Coil cable 6 feet long not less than 12 inches in diameter below each feed point.
- G. Outdoor Coaxial Cable Installation:
 - 1. Install outdoor connections in enclosures complying with NEMA 250, Type 4X. Install corrosion-resistant connectors with properly designed O-rings to keep out moisture.
 - 2. Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches.
- H. Group connecting hardware for cables into separate logical fields.
- I. Separation from EMI Sources:
 - 1. Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches.
 - 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches.

- b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
- c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches.
- 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches.
- 5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.
- 6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.5 FIRESTOPPING

- A. Comply with requirements in Section 078413 "Penetration Firestopping."
- B. Comply with TIA/EIA-569-A, Annex A, "Firestopping."
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING

- A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. Comply with ANSI-J-STD-607-A.
- C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
- D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.7 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

- 1. Administration Class: 2.
- 2. Color-code cross-connect fields and apply colors to voice and data service backboards, connections, covers, and labels.
- B. Comply with requirements in Section 099123 "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.
- C. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 2 level of administration including optional identification requirements of this standard.
- D. Comply with requirements in Section 271500 "Communications Horizontal Cabling" for cable and asset management software.
- E. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
- F. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, entrance pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.
- G. Cable and Wire Identification:
 - 1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
 - 2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
 - 3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.
 - 4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 - a. Individually number wiring conductors connected to terminal strips and identify each cable or wiring group being extended from a panel or cabinet to a buildingmounted device with name and number of particular device as shown.
 - b. Label each unit and field within distribution racks and frames.
 - 5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.

- H. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA 606-A, for the following:
 - 1. Cables use flexible vinyl or polyester that flexes as cables are bent.

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Visually inspect UTP and optical fiber jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA/EIA-568-B.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 3. Test UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 - Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - 4. Optical Fiber Cable Tests:
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - b. Link End-to-End Attenuation Tests:
 - 1) Horizontal and multimode backbone link measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.
 - 2) Attenuation test results for backbone links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
- C. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

- D. Remove and replace cabling where test results indicate that they do not comply with specified requirements.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

END OF SECTION 271300

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 271500 - COMMUNICATIONS HORIZONTAL CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. UTP cabling.
 - 2. 50/125-micrometer, optical fiber cabling.
 - 3. Coaxial cable.
 - 4. Multiuser telecommunications outlet assemblies.
 - 5. Cable connecting hardware, patch panels, and cross-connects.
 - 6. Telecommunications outlet/connectors.
 - 7. Cabling system identification products.
- B. Related Requirements:
 - 1. Section 271300 "Communications Backbone Cabling" for voice and data cabling associated with system panels and devices.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. Consolidation Point: A location for interconnection between horizontal cables extending from building pathways and horizontal cables extending into furniture pathways.
- C. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
- D. EMI: Electromagnetic interference.
- E. IDC: Insulation displacement connector.
- F. LAN: Local area network.

- G. WAP: Wireless Access Point (Device furnished by owner, wiring by contractor)
- H. MUTOA: Multiuser telecommunications outlet assembly, a grouping in one location of several telecommunications outlet/connectors.
- I. Outlet/Connectors: A connecting device in the work area on which horizontal cable or outlet cable terminates.
- J. RCDD: Registered Communications Distribution Designer.
- K. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordinate layout and installation of telecommunications cabling with Owner's telecommunications and LAN equipment and service suppliers.
- B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For coaxial cable, include the following installation data for each type used:
 - a. Nominal OD.
 - b. Minimum bending radius.
 - c. Maximum pulling tension.
- B. Shop Drawings:
 - 1. System Labeling Schedules: Electronic copy of labeling schedules, in Microsoft Excel software.
 - 2. Cabling administration drawings and printouts.
 - 3. Wiring diagrams to show typical wiring schematics, including the following:
 - a. Cross-connects.
 - b. Patch panels.
 - c. Patch cords.
 - 4. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.
- B. Source quality-control reports.
- C. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For splices and connectors to include in maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Patch-Panel Units: One of each type.
 - 2. Connecting Blocks: One of each type.
 - 3. Device Plates: One of each type.
 - 4. Multiuser Telecommunications Outlet Assemblies: One of each type.

1.9 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings, Cabling Administration Drawings, and field testing program development by an RCDD.
 - 2. Installation Supervision: Installation shall be under the direct supervision of Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.

1.10 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - 1. Test optical fiber cables to determine the continuity of the strand end to end. Use optical fiber flashlight or optical loss test set.
 - 2. Test optical fiber cables while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; including the loss value of each. Retain test data and include the record in maintenance data.
 - 3. Test each pair of UTP cable for open and short circuits.

PART 2 - PRODUCTS

2.1 HORIZONTAL CABLING DESCRIPTION

- A. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the communications equipment room. This cabling and its connecting hardware are called a "permanent link," a term that is used in the testing protocols.
 - 1. TIA/EIA-568-B.1 requires that a minimum of two telecommunications outlet/connectors be installed for each work area.
 - 2. Horizontal cabling shall contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.
 - 3. Bridged taps and splices shall not be installed in the horizontal cabling.
 - 4. Splitters shall not be installed as part of the optical fiber cabling.
- B. A work area is approximately 100 sq. ft., and includes the components that extend from the telecommunications outlet/connectors to the station equipment.
- C. The maximum allowable horizontal cable length is 295 feet. This maximum allowable length does not include an allowance for the length of 16 feet to the workstation equipment or in the horizontal cross-connect.

2.2 PERFORMANCE REQUIREMENTS

- A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA/EIA-568-B.1 when tested according to test procedures of this standard.
- B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 50 or less.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Grounding: Comply with J-STD-607-A.

2.3 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches. Comply with requirements in Section 061000 "Rough Carpentry" for plywood backing panels.
2.4 UTP CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Premise Wiring.
 - 2. 3M.
 - 3. AMP NETCONNECT; a TE Connectivity Ltd. company.
 - 4. Belden CDT Networking Division/NORDX.
 - 5. Berk-Tek Leviton; a Nexans/Leviton alliance.
 - 6. CommScope, Inc.
 - 7. Draka USA.
 - 8. General Cable; General Cable Corporation.
 - 9. Genesis Cable Products; Honeywell International, Inc.
 - 10. Mohawk; a division of Belden Networking, Inc.
 - 11. Superior Essex Inc.
 - 12. SYSTIMAX Solutions; a CommScope Inc. brand.
- B. Description: 100-ohm, four-pair UTP, formed into 25-pair, binder groups covered with a blue thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, Category 6.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG.
 - b. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 - c. Communications, Riser Rated: Type CMR, complying with UL 1666.
 - d. Communications, Limited Purpose: Type CMX.
 - e. Multipurpose: Type MP or MPG.
 - f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 - g. Multipurpose, Riser Rated: Type MPR, complying with UL 1666.

2.5 UTP CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Leviton Manufacturing Co., Inc.
- B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.

- D. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.
- E. Patch Cords: Factory-made, four-pair cables in 48-inch lengths; terminated with eight-position modular plug at each end.
 - 1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.

2.6 OPTICAL FIBER CABLE

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. 3M.
 - 2. AMP NETCONNECT; a TE Connectivity Ltd. company.
 - 3. Belden CDT Networking Division/NORDX.
 - 4. Berk-Tek Leviton; a Nexans/Leviton alliance.
 - 5. CommScope, Inc.
 - 6. Corning Cable Systems.
 - 7. CSI Technologies Inc.
 - 8. General Cable; General Cable Corporation.
 - 9. Mohawk; a division of Belden Networking, Inc.
 - 10. Superior Essex Inc.
 - 11. SYSTIMAX Solutions; a CommScope Inc. brand.
- B. Description: Multimode, 50/125-micrometer, 24-fiber, nonconductive, tight buffer, optical fiber cable.
 - 1. Comply with ICEA S-83-596 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.3 for performance specifications.
 - 3. Comply with TIA-492AAAB for detailed specifications.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 - a. General Purpose, Nonconductive: Type OFN or OFNG.
 - b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - c. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 - d. General Purpose, Conductive: Type OFC or OFCG.
 - e. Plenum Rated, Conductive: Type OFCP, complying with NFPA 262.

- f. Riser Rated, Conductive: Type OFCR, complying with UL 1666.
- 5. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
- 6. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.
- C. Jacket:
 - 1. Jacket Color: Aqua for 50/125-micrometer cable.
 - 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-C.
 - 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

2.7 OPTICAL FIBER CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Leviton Manufacturing Co., Inc.
- B. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.
 - 1. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.
- C. Patch Cords: Factory-made, dual-fiber cables in 36-inch lengths.
- D. Cable Connecting Hardware:
 - 1. Comply with Optical Fiber Connector Intermateability Standards (FOCIS) specifications of TIA-604-2-B, TIA-604-3-B, and TIA/EIA-604-12. Comply with TIA/EIA-568-B.3.
 - 2. Quick-connect, simplex and duplex, Type SC or Type LC connectors. Insertion loss not more than 0.75 dB.
 - 3. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.8 COAXIAL CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Alpha Wire.
 - 2. Belden CDT Networking Division/NORDX.
 - 3. Coleman Cable, Inc.
 - 4. CommScope, Inc.

- 5. Draka USA.
- B. Cable Characteristics: Broadband type, recommended by cable manufacturer specifically for broadband data transmission applications. Coaxial cable and accessories shall have 75-ohm nominal impedance with a return loss of 20 dB maximum from 7 to 806 MHz.
- C. RG-11/U: NFPA 70, Type CATV.
 - 1. No. 14 AWG, solid, copper-covered steel conductor.
 - 2. Gas-injected, foam-PE insulation.
 - 3. Double shielded with 100 percent aluminum polyester tape and 60 percent aluminum braid.
 - 4. Jacketed with sunlight-resistant, black PVC or PE.
 - 5. Suitable for outdoor installations in ambient temperatures ranging from minus 40 to plus 85 deg C.
- D. RG59/U: NFPA 70, Type CATVR.
 - 1. No. 20 AWG, solid, silver-plated, copper-covered steel conductor.
 - 2. Gas-injected, foam-PE insulation.
 - 3. Triple shielded with 100 percent aluminum polyester tape and 95 percent aluminum braid; covered by aluminum foil with grounding strip.
 - 4. Color-coded PVC jacket.
- E. RG-6/U: NFPA 70, Type CATV or CM.
 - 1. No. 16 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 60 percent aluminum braid.
 - 3. Jacketed with black PVC or PE.
 - 4. Suitable for indoor installations.
- F. RG59/U: NFPA 70, Type CATV.
 - 1. No. 20 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - 2. Double shielded with 100 percent aluminum polyester tape and 40 percent aluminum braid.
 - 3. PVC jacket.
- G. RG59/U (Plenum Rated): NFPA 70, Type CMP.
 - 1. No. 20 AWG, solid, copper-covered steel conductor; foam fluorinated ethylene propylene insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 65 percent aluminum braid.
 - 3. Copolymer jacket.

- 1. CATV Cable: Type CATV.
- 2. CATV Plenum Rated: Type CATVP, complying with NFPA 262.
- 3. CATV Riser Rated: Type CATVR, complying with UL 1666.
- 4. CATV Limited Rating: Type CATVX.

2.9 MULTIUSER TELECOMMUNICATIONS OUTLET ASSEMBLY (MUTOA)

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Belden CDT Networking Division/NORDX.
 - 2. Chatsworth Products, Inc.
 - 3. Hubbell Premise Wiring.
 - 4. Molex Premise Networks.
 - 5. Ortronics, Inc.
 - 6. Panduit Corp.
 - 7. Siemon Co. (The).
- B. Description: MUTOAs shall meet the requirements for cable connecting hardware.
 - 1. Number of Terminals per Field: One for each conductor in assigned cables.
 - 2. Number of Connectors per Field:
 - a. One for each four-pair UTP cable indicated.
 - b. One for each four-pair conductor group of indicated cables, plus 25 percent spare positions.
 - 3. Mounting: Wall.
 - 4. NRTL listed as complying with UL 50 and UL 1863.
 - 5. Label shall include maximum length of work area cords, based on TIA/EIA-568-B.1.
 - 6. When installed in plenums used for environmental air, NRTL listed as complying with UL 2043.

2.10 TELECOMMUNICATIONS OUTLET/CONNECTORS

- A. Jacks: 100-ohm, balanced, twisted-pair connector; four-pair, eight-position modular. Comply with TIA/EIA-568-B.1.
- B. Workstation Outlets: Four-port-connector assemblies mounted in single faceplate.

- 1. Plastic Faceplate: High-impact plastic. Coordinate color with Section 262726 "Wiring Devices."
- 2. For use with snap-in jacks accommodating any combination of UTP, optical fiber, and coaxial work area cords.
 - a. Flush mounting jacks, positioning the cord at a 45-degree angle.
- 3. Legend: Machine printed, in the field, using adhesive-tape label.

2.11 GROUNDING

- A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.
- B. Comply with J-STD-607-A.

2.12 IDENTIFICATION PRODUCTS

- A. Comply with TIA/EIA-606-A and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
- B. Comply with requirements in Section 260553 "Identification for Electrical Systems."

2.13 SOURCE QUALITY CONTROL

- A. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- B. Factory test UTP cables according to TIA/EIA-568-B.2.
- C. Factory test multimode optical fiber cables according to TIA-526-14-A and TIA/EIA-568-B.3.
- D. Factory-sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
- E. Cable will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

3.2 WIRING METHODS

- A. Install cables in pathways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal pathways and cables except in unfinished spaces.
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 - 2. Comply with requirements in Section 270528 "Pathways for Communications Systems."
 - 3. Comply with requirements in Section 270536 "Cable Trays for Communications Systems."
- B. Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- C. Wiring within Enclosures:
 - 1. Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii.
 - 2. Install lacing bars and distribution spools.
 - 3. Install conductors parallel with or at right angles to sides and back of enclosure.

3.3 INSTALLATION OF CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - 4. MUTOA shall not be used as a cross-connect point.
 - 5. Consolidation points may be used only for making a direct connection to telecommunications outlet/connectors:
 - a. Do not use consolidation point as a cross-connect point, as a patch connection, or for direct connection to workstation equipment.

- b. Locate consolidation points for UTP at least 49 feet from communications equipment room.
- 6. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
- 7. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
- 8. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
- 9. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
- 10. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- 11. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 12. In the communications equipment room, install a 10-foot-long service loop on each end of cable.
- 13. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
- C. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.
- D. Optical Fiber Cable Installation:
 - 1. Comply with TIA/EIA-568-B.3.
 - 2. Cable may be terminated on connecting hardware that is rack or cabinet mounted.
- E. Open-Cable Installation:
 - 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - 2. Suspend UTP cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- F. Group connecting hardware for cables into separate logical fields.
- G. Separation from EMI Sources:

- 1. Comply with BICSI TDMM and TIA-569-B for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
- 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches.
- 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches.
- 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches.
- 5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.
- 6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.4 FIRESTOPPING

- A. Comply with requirements in Section 078413 "Penetration Firestopping."
- B. Comply with TIA-569-B, Annex A, "Firestopping."
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 GROUNDING

- A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. Comply with J-STD-607-A.

- C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
- D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.6 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 1. Administration Class: 2.
 - 2. Color-code cross-connect fields. Apply colors to voice and data service backboards, connections, covers, and labels.
- B. Using cable management system software specified in Part 2, develop Cabling Administration Drawings for system identification, testing, and management. Use unique, alphanumeric designation for each cable and label cable, jacks, connectors, and terminals to which it connects with same designation. At completion, cable and asset management software shall reflect as-built conditions.
- C. Comply with requirements in Section 099123 "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.
- D. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 2 level of administration, including optional identification requirements of this standard.
- E. Cable Schedule: Post in prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
- F. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, entrance pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors. Follow convention of TIA/EIA-606-A. Furnish electronic record of all drawings, in software and format selected by Owner.
- G. Cable and Wire Identification:

- 1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
- 2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
- 3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.
- 4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 - a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with name and number of particular device as shown.
 - b. Label each unit and field within distribution racks and frames.
- 5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
- 6. Uniquely identify and label work area cables extending from the MUTOA to the work area. These cables may not exceed the length stated on the MUTOA label.
- H. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA-606-A.
 - 1. Cables use flexible vinyl or polyester that flex as cables are bent.

3.7 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Visually inspect UTP and optical fiber cable jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA/EIA-568-B.1.
 - 2. Visually confirm Category 6, marking of outlets, cover plates, outlet/connectors, and patch panels.
 - 3. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 4. Test UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in

"Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

- 5. Optical Fiber Cable Tests:
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - b. Link End-to-End Attenuation Tests:
 - 1) Horizontal and multimode backbone link measurements: Test at 850 or 1300 nm in 1 direction according to TIA-526-14-A, Method B, One Reference Jumper.
 - 2) Attenuation test results for backbone links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
- 6. UTP Performance Tests:
 - a. Test for each outlet and MUTOA. Perform the following tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.2:
 - 1) Wire map.
 - 2) Length (physical vs. electrical, and length requirements).
 - 3) Insertion loss.
 - 4) Near-end crosstalk (NEXT) loss.
 - 5) Power sum near-end crosstalk (PSNEXT) loss.
 - 6) Equal-level far-end crosstalk (ELFEXT).
 - 7) Power sum equal-level far-end crosstalk (PSELFEXT).
 - 8) Return loss.
 - 9) Propagation delay.
 - 10) Delay skew.
- 7. Optical Fiber Cable Performance Tests: Perform optical fiber end-to-end link tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.3.
- 8. Final Verification Tests: Perform verification tests for UTP and optical fiber systems after the complete communications cabling and workstation outlet/connectors are installed.
 - a. Voice Tests: These tests assume that dial tone service has been installed. Connect to the network interface device at the demarcation point. Go off-hook and listen and receive a dial tone. If a test number is available, make and receive a local, long distance, and digital subscription line telephone call.

- b. Data Tests: These tests assume the Information Technology Staff has a network installed and is available to assist with testing. Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network.
- B. Document data for each measurement. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.
- C. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel in cable-plant management operations, including changing signal pathways for different workstations, rerouting signals in failed cables, and keeping records of cabling assignments and revisions when extending wiring to establish new workstation outlets. Include training in cabling administration spreadsheet software.

END OF SECTION 271500

SECTION 283111 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fire-alarm control unit.
 - 2. Manual fire-alarm boxes.
 - 3. System smoke detectors.
 - 4. Heat detectors.
 - 5. Notification appliances.
 - 6. Device guards.
 - 7. Remote annunciator.
 - 8. Addressable interface device.
 - 9. Digital alarm communicator transmitter.
 - 10. Fire Alarm wire and cable.
 - 11. Network communications.

1.3 DEFINITIONS

- A. EMT: Electrical Metallic Tubing.
- B. FACP: Fire Alarm Control Panel.
- C. HLI: High Level Interface.
- D. NICET: National Institute for Certification in Engineering Technologies.
- E. PC: Personal computer.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product, including furnished options and accessories.
 - 1. Include construction details, material descriptions, dimensions, profiles, and finishes.

- 2. Include rated capacities, operating characteristics, and electrical characteristics.
- B. Shop Drawings: For fire-alarm system.
 - 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - 2. Include plans, elevations, sections, details, and attachments to other work.
 - 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
 - 4. Detail assembly and support requirements.
 - 5. Include voltage drop calculations for notification-appliance circuits.
 - 6. Include battery-size calculations.
 - 7. Include input/output matrix.
 - 8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
 - 9. Include performance parameters and installation details for each detector.
 - 10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
 - 11. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale; coordinate location of duct smoke detectors and access to them.
- C. General Submittal Requirements:
 - 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Engineer.
 - 2. Shop Drawings shall be prepared by persons with the following qualifications:
 - a. Trained and certified by manufacturer in fire-alarm system design.
 - b. NICET-certified, fire-alarm technician; Level IV minimum.
- D. Delegated-Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Drawings showing the location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.
 - 2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.
 - 3. Indicate audible appliances required to produce square wave signal per NFPA 72.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Seismic Qualification Certificates: For fire-alarm control unit, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.
- 1.6 Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following and deliver copies to authorities having jurisdiction:
 - a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - c. Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
 - d. Riser diagram.
 - e. Device addresses.
 - f. Record copy of site-specific software.
 - g. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:
 - 1) Equipment tested.
 - 2) Frequency of testing of installed components.
 - 3) Frequency of inspection of installed components.
 - 4) Requirements and recommendations related to results of maintenance.
 - 5) Manufacturer's user training manuals.

- h. Manufacturer's required maintenance related to system warranty requirements.
- i. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
 - 2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
 - 3. Smoke Detectors, Fire Detectors, and Flame Detectors: Quantity equal to [**10**] percent of amount of each type installed, but no fewer than one unit of each type.
 - 4. Detector Bases: Quantity equal to two percent of amount of each type installed, but no fewer than one unit of each type.
 - 5. Keys and Tools: One extra set for access to locked or tamperproofed components.
 - 6. Audible and Visual Notification Appliances: One of each type installed.
 - 7. Fuses: Two of each type installed in the system. Provide in a box or cabinet with compartments marked with fuse types and sizes.

1.9 QUALITY ASSURANCE

- A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
- B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level IV technician.
- C. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

1.10 PROJECT CONDITIONS

A. Use of Devices during Construction: Protect devices during construction unless devices are placed in service to protect the facility during construction.

1.11 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.

- 1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
- 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.
- B. Noncoded, UL-certified addressable system, with multiplexed signal transmission and horn/strobe evacuation.
- C. Automatic sensitivity control of certain smoke detectors.
- D. All components provided shall be listed for use with the selected system.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

- A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
 - 1. Manual stations.
 - 2. Heat detectors.
 - 3. Flame detectors.
 - 4. Smoke detectors.
 - 5. Duct smoke detectors.
 - 6. Automatic sprinkler system water flow.
 - 7. Preaction system.
 - 8. Fire-extinguishing system operation.
 - 9. Fire standpipe system.
 - 10. Dry system pressure flow switch.
- B. Fire-alarm signal shall initiate the following actions:
 - 1. Continuously operate alarm notification appliances.
 - 2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
 - 3. Transmit an alarm signal to the remote alarm receiving station.
 - 4. Activate alarm communication system.
 - 5. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.

- 6. Close smoke dampers in air ducts of designated air-conditioning duct systems.
- 7. Record events in the system memory.
- 8. Record events by the system printer.
- 9. Indicate device in alarm on remote annunciator.
- C. System trouble signal initiation shall be by one or more of the following devices and actions:
 - 1. Open circuits, shorts, and grounds in designated circuits.
 - 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
 - 3. Loss of communication with any addressable sensor, input module, relay, control module, remote annunciator, printer interface, or Ethernet module.
 - 4. Loss of primary power at fire-alarm control unit.
 - 5. Ground or a single break in internal circuits of fire-alarm control unit.
 - 6. Abnormal ac voltage at fire-alarm control unit.
 - 7. Break in standby battery circuitry.
 - 8. Failure of battery charging.
 - 9. Abnormal position of any switch at fire-alarm control unit or annunciator.
- D. System Supervisory Signal Actions:
 - 1. Initiate notification appliances.
 - 2. Identify specific device initiating the event at fire-alarm control unit and remote annunciators.
 - 3. Record the event on system printer.
 - 4. After a time delay, transmit a trouble or supervisory signal to the remote alarm receiving station.
 - 5. Transmit system status to building management system.
 - 6. Display system status on graphic annunciator.

2.3 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Fire-alarm system shall withstand the effects of earthquake motions determined according to ASCE 7-10 Chapter 13.
 - 1. Seismic Controls shall be provided as required for the entire fire-alarm system.

2.4 FIRE-ALARM CONTROL UNIT

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Edwards; United Technologies.
 - 2. Fike Corporation.
 - 3. Fire-Lite Alarms, Inc.; a Honeywell International company.

- 4. Gamewell FCI by Honeywell.
- 5. Notifier.
- 6. Siemens Industry, Inc.; Fire Safety Division.
- 7. Silent Knight.
- 8. SimplexGrinnell LP.
- B. General Requirements for Fire-Alarm Control Unit:
 - 1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
 - a. System software and programs shall be held in nonvolatile flash, electrically erasable, programmable, read-only memory, retaining the information through failure of primary and secondary power supplies.
 - b. Include a real-time clock for time annotation of events on the event recorder and printer.
 - c. Provide communication between the FACP and remote circuit interface panels, annunciators, and displays.
 - d. The FACP shall be listed for connection to a central-station signaling system service.
 - e. Provide nonvolatile memory for system database, logic, and operating system and event history. The system shall require no manual input to initialize in the event of a complete power down condition. The FACP shall provide a minimum 500-event history log.
 - 2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.
 - 3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.
- C. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
 - 1. Annunciator and Display: Liquid-crystal type, three line(s) of 80 characters, minimum.
 - 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands and to indicate control commands to be entered into the system for control of smoke-detector sensitivity and other parameters.
- D. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:
 - 1. Pathway Class Designations: NFPA 72, Class A.
 - 2. Pathway Survivability: Level 0.
 - 3. Install no more than 50 addressable devices on each signaling-line circuit.

- 4. Serial Interfaces:
 - a. One dedicated RS 485 port for central-station or remote station operation using point ID DACT.
 - b. One RS 485 port for remote annunciators, Ethernet module, or multi-interface module (printer port).
 - c. One USB port for PC configuration.
- E. Smoke-Alarm Verification:
 - 1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
 - 2. Activate an approved "alarm-verification" sequence at fire-alarm control unit and detector.
 - 3. Record events by the system printer.
 - 4. Sound general alarm if the alarm is verified.
 - 5. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.
- F. Notification-Appliance Circuit:
 - 1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
 - Where notification appliances provide signals to sleeping areas, the alarm signal shall be a 520-Hz square wave with an intensity 15 dB above the average ambient sound level or 5 dB above the maximum sound level, or at least 75 dBA, whichever is greater, measured at the pillow.
 - 3. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.
- G. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups. Record sensitivity adjustments and sensitivity-adjustment schedule changes in system memory, and print out the final adjusted values on system printer.
- H. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.
- I. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.
 - 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.
- J. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

- 1. Batteries: Vented, wet-cell pocket, plate nickel cadmium.
- K. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.5 MANUAL FIRE-ALARM BOXES

- A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.
 - 1. Double-action mechanism requiring two actions to initiate an alarm, breaking-glass or plastic-rod type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
 - 2. Station Reset: Key- or wrench-operated switch.
 - 3. Indoor Protective Shield: Factory-fabricated, clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm. Lifting the cover actuates an integral battery-powered audible horn intended to discourage false-alarm operation.

2.6 SYSTEM SMOKE DETECTORS

- A. General Requirements for System Smoke Detectors:
 - 1. Comply with UL 268; operating at 24-V dc, nominal.
 - 2. Detectors shall be four-wire type.
 - 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
 - 4. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
 - 5. Integral Visual-Indicating Light: LED type, indicating detector has operated and poweron status.
 - 6. Remote Control: Unless otherwise indicated, detectors shall be digital-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
 - a. Multiple levels of detection sensitivity for each sensor.
 - b. Sensitivity levels based on time of day.
- B. Photoelectric Smoke Detectors:
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.

- 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).
- C. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).
 - 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
 - 4. Each sensor shall have multiple levels of detection sensitivity.
 - 5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
 - 6. Relay Fan Shutdown: Fully programmable relay rated to interrupt fan motor-control circuit.

2.7 HEAT DETECTORS

- A. General Requirements for Heat Detectors: Comply with UL 521.
 - 1. Temperature sensors shall test for and communicate the sensitivity range of the device.
- B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute unless otherwise indicated.
 - 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 - 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.8 NOTIFICATION APPLIANCES

- A. General Requirements for Notification Appliances: Individually addressed, connected to a signaling-line circuit, equipped for mounting as indicated, and with screw terminals for system connections.
 - 1. Combination Devices: Factory-integrated audible and visible devices in a singlemounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.
- B. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.
- C. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch-high letters on the lens.
 - 1. Rated Light Output:
 - a. 15/30/75/110 cd, selectable in the field.
 - 2. Mounting: Wall mounted unless otherwise indicated.
 - 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
 - 4. Flashing shall be in a temporal pattern, synchronized with other units.
 - 5. Strobe Leads: Factory connected to screw terminals.
 - 6. Mounting Faceplate: Factory finished, red.

2.9 REMOTE ANNUNCIATOR

- A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
 - 1. Mounting: Flush cabinet, NEMA 250, Type 1.
- B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.10 ADDRESSABLE INTERFACE DEVICE

A. General:

- 1. Include address-setting means on the module.
- 2. Store an internal identifying code for control panel use to identify the module type.
- 3. Listed for controlling HVAC fan motor controllers.
- B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.
- C. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall.
 - 1. Allow the control panel to switch the relay contacts on command.
 - 2. Have a minimum of two normally open and two normally closed contacts available for field wiring.
- D. Control Module:
 - 1. Operate notification devices.
 - 2. Operate solenoids for use in sprinkler service.

2.11 DIGITAL ALARM COMMUNICATOR TRANSMITTER

- A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632.
- B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from firealarm control unit and automatically capture one telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.
- C. Local functions and display at the digital alarm communicator transmitter shall include the following:
 - 1. Verification that both telephone lines are available.
 - 2. Programming device.
 - 3. LED display.
 - 4. Manual test report function and manual transmission clear indication.
 - 5. Communications failure with the central station or fire-alarm control unit.
- D. Digital data transmission shall include the following:
 - 1. Address of the alarm-initiating device.
 - 2. Address of the supervisory signal.

- 3. Address of the trouble-initiating device.
- 4. Loss of ac supply.
- 5. Loss of power.
- 6. Low battery.
- 7. Abnormal test signal.
- 8. Communication bus failure.
- E. Secondary Power: Integral rechargeable battery and automatic charger.
- F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

2.12 FIRE ALARM WIRE AND CABLE

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Allied Wire & Cable Inc</u>.
 - 2. <u>CommScope, Inc</u>.
 - 3. <u>Genesis Cable Products; Honeywell International, Inc.</u>
 - 4. <u>Superior Essex Inc</u>.
 - 5. <u>West Penn Wire</u>.
- B. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- C. Signaling Line Circuits: Twisted, shielded pair, size as recommended by system manufacturer.
- D. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation, and complying with requirements in UL 2196 for a two-hour rating.
 - 1. Low-Voltage Circuits: No. 16 AWG, minimum, in pathway.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum, in pathway.

2.13 NETWORK COMMUNICATIONS

- A. Provide network communications for fire-alarm system according to fire-alarm manufacturer's written requirements.
- B. Provide network communications pathway per manufacturer's written requirements and requirements in NFPA 72 and NFPA 70.
- C. Provide integration gateway using BACnet for connection to building automation system.

2.14 DEVICE GUARDS

- A. Description: Welded wire mesh of size and shape for the manual station, smoke detector, gong, or other device requiring protection.
 - 1. Factory fabricated and furnished by device manufacturer.
 - 2. Finish: Paint of color to match the protected device.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
 - 1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.
- B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION

- A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
 - 1. Devices placed in service before all other trades have completed cleanup shall be replaced.
 - 2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer's written storage instructions.
 - 3. Comply with requirements for seismic-restraint devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- B. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.
 - 1. Comply with requirements for seismic-restraint devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."

- C. Manual Fire-Alarm Boxes:
 - 1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
 - 2. Mount manual fire-alarm box on a background of a contrasting color.
 - 3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.
- D. Smoke- or Heat-Detector Spacing:
 - 1. Comply with the "Smoke-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for smoke-detector spacing.
 - 2. Comply with the "Heat-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for heat-detector spacing.
 - 3. Smooth ceiling spacing shall not exceed 30 feet.
 - 4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Annex A or Annex B in NFPA 72.
 - 5. HVAC: Locate detectors not closer than 36 inches from air-supply diffuser or return-air opening.
 - 6. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture and not directly above pendant mounted or indirect lighting.
- E. Install a cover on each smoke detector that is not placed in service during construction. Cover shall remain in place except during system testing. Remove cover prior to system turnover.
- F. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.
 - 1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.
- G. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.
- H. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.
- I. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling. Install all devices at the same height unless otherwise indicated.

3.3 FIRE ALARM WIRING INSTALLATION

A. Comply with NECA 1 and NFPA 72.

- B. Wiring Method: Install wiring in metal pathways.
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 - 2. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated pathway system. This system shall not be used for any other wire or cable.
- C. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- D. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- E. Color Coding: Color code fire alarm conductors differently from the normal building power wiring. Use one color code for alarm circuit wiring and another for supervisory circuits. Color code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

3.4 PATHWAYS

- A. Pathways shall be installed in EMT.
- B. Exposed EMT shall be painted red enamel.

3.5 CONNECTIONS

- A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Section 087100 "Door Hardware." Connect hardware and devices to fire-alarm system.
 - 1. Verify that hardware and devices are listed for use with installed fire-alarm system before making connections.
- B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 - 1.
 - 2. Smoke dampers in air ducts of designated HVAC duct systems.

- 3. Alarm-initiating connection to elevator recall system and components.
- 4. Alarm-initiating connection to activate emergency lighting control.
- 5. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
- 6. Supervisory connections at valve supervisory switches.
- 7. Supervisory connections at low-air-pressure switch of each dry-pipe sprinkler system.
- 8. Data communication circuits for connection to building management system.

3.6 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- B. Install framed instructions in a location visible from fire-alarm control unit.

3.7 GROUNDING

- A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.
- B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.8 FIELD QUALITY CONTROL

- A. Field tests shall be witnessed by Owner's Construction Representative.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
- D. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Visual Inspection: Conduct visual inspection prior to testing.
 - a. Inspection shall be based on completed record Drawings and system documentation that is required by the "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
 - 2. System Testing: Comply with the "Test Methods" table in the "Testing" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

- 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
- 4. Test audible appliances for the private operating mode according to manufacturer's written instructions.
- 5. Test visible appliances for the public operating mode according to manufacturer's written instructions.
- 6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
- E. Fire-alarm system will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.
- G. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.
- H. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.9 MAINTENANCE SERVICE

- A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 - 1. Include visual inspections according to the "Visual Inspection Frequencies" table in the "Testing" paragraph of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - 2. Perform tests in the "Test Methods" table in the "Testing" paragraph of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - 3. Perform tests per the "Testing Frequencies" table in the "Testing" paragraph of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 283111

Fairfield County Auditor's Office Real Estate Department

SECTION 316216 - STEEL HELICAL PILES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes designing, furnishing and installing steel helical piles.
- B. Steel helical piles shall be designed and installed to resist the service level design loads as shown in the Drawings.
- C. The geotechnical report for the site is included as a supplement to this Project Manual.

1.3 ALLOWANCES

A. General: See Section 012116 "Allowances" for allowance related to special inspections and testing.

1.4 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review geotechnical report.
 - 2. Review construction monitoring progress and requirements.
 - 3. Review existing utilities and subsurface conditions.
 - 4. Review corrosion protection measures.
 - 5. Review coordination for interruption, shutoff, capping, and continuation of utility services.
 - 6. Review proposed excavations.
 - 7. Review proposed equipment.
 - 8. Protection of existing construction.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

- 1. Include construction details, material descriptions, performance properties, and dimensions of individual components and profiles, and calculations for excavation support and protection system.
- B. Shop Drawings: For steel helical piles to be installed by specialty helical pile contractor, prepared by or under the supervision of a qualified professional engineer (Pile Design Professional) and submitted at least 28 calendar days prior to planned start of installation.
 - 1. Include plans, elevations, sections, and details.
 - 2. Show arrangement, locations, and details of steel helical piles, and other components of steel helical piles system according to engineering design.
 - 3. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld.
 - 4. Submit shop drawings indicating shaft and helix sizes, and include manufacturer's catalog cut and data sheets.
 - 5. Include a written plan for installation, including sequence of construction coordinated with other construction and construction monitoring.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified manufacturer, specialty helical pile contractor (installer), professional engineer (Pile Design Professional) and testing/inspection agency.
- B. Specialty Helical Pile Contractor Calculations: For steel helical pile system designed for this project. Include analysis data signed and sealed by the qualified professional engineer (Pile Design Professional) licensed in the State of Michigan responsible for their preparation.
 - 1. Contractor's specialty helical pile contractor shall submit design calculations for the steel helical pile system intended for use on the project at least 28 calendar days prior to planned start of installation from the specialty helical pile contractor's pile design professional licensed as a Professional Engineer in the State of Michigan. The Shop Drawings shall include the following:
 - a. Reduction in shaft dimension and strength by the sacrificial thickness anticipated based on corrosion loss over the design life for project soil conditions.
 - b. Considerations for downdrag, buckling, and expansive soils (as appropriate).
 - c. Minimum installation depth to reach bearing stratum and to achieve pullout capacity.
 - d. Soil bearing and pullout capacity.
 - e. Lateral resistance of the shaft.
 - f. Estimated pile head movement at design loads.
- C. Welding certificates.
- D. Mill Test Reports: For pier shafts, helices and steel plate, signed by manufacturer.
- E. Steel Helical Pile Installation Equipment Data.

- 1. Specialty helical pile contractor shall submit information certified by an independent testing agency for the torque measurement device and all load testing and monitoring equipment to be used on the project. Calibration information shall have been tested within the last year of the date submitted. Calibration information shall include, but is not limited to, the name of the testing agency, identification number or serial number of device calibrated, and the date of calibration.
- F. Pile Test Reports: Submit within three days of completing each test.
- G. Pile-Driving Records: Submit within three days of driving each pile.
- H. Field quality-control reports.
- I. Preconstruction Photographs: Photographs or video of existing conditions of adjacent construction. Submit before the Work begins.
- J. Preinstallation Conference minutes.
- K. Record Drawings: Identify locations and depths installed steel helical pile systems.

1.7 QUALITY ASSURANCE

- A. Manufacturer Qualifications: All Steel helical piles, Brackets and components shall be obtained from a company specializing in the manufacturing and distribution of these products.
 - 1. The Contractor shall submit with Contractor's Bid Form Supplement the following:
 - a. Evidence showing manufacturer has at least ten (10) years experience in the design and manufacturing of steel helical piles.
 - b. Manufacturer's product catalog and all necessary technical data.
 - c. Current ICC-ES product evaluation report or complete description of product testing and engineering calculations used to assess product capacity.
- B. Specialty Helical Pile Contractor (Installer) Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
 - 1. Installer's responsibility includes engaging a qualified professional engineer licensed in the State of Michigan to prepare design (Pile Design Professional).
 - 2. Installer's proof of current certification with the Manufacturer shall be submitted with Contractor's Bid Form Supplement.
 - 3. Evidence of having installed steel helical piles on at least ten (10) projects, including project name, number and type of Steel helical piles, project location, and client contact information.
- C. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.

D. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code - Steel."

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver piles to Project site in such quantities and at such times to ensure continuity of installation. Handle and store piles at Project site to prevent buckling or physical damage.

1.9 FIELD CONDITIONS

- A. Interruption of Existing Utilities: Do not interrupt any utility serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility according to requirements indicated:
 - 1. Notify Architect and Owner no fewer than two days in advance of proposed interruption of utility.
 - 2. Do not proceed with interruption of utility without Owner's written permission.
- B. Project-Site Information: A geotechnical report has been prepared for this Project and is available for information only. The opinions expressed in this report are those of a geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by a geotechnical engineer. The Architect, Engineer and Owner are not responsible for interpretations or conclusions drawn from the data.
 - 1. The geotechnical report is included as a supplement to this Project Manual.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Provide steel helical piles and all associated components capable of withstanding service level design loads indicated.
 - 1. Design steel helical piles and all associated components, including comprehensive engineering analysis by a qualified professional engineer (Pile Design Professional) for the specialty helical pile contractor.
 - 2. Install system without damaging existing buildings, structures, and site improvements.
 - a. Provide and maintain shoring, bracing and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being removed.
 - 3. Contractor shall provide construction monitoring in accordance with construction documents to monitor that damage to permanent structures is prevented.
2.2 STEEL HELICAL PILE SYSTEM

- A. The Specialty Helical Pile Contractor and their Pile Design Professional are responsible for selection of the appropriate size and type of Steel helical piles and components to support the design loads shown on the Drawings. These specifications and the Drawings provide minimum requirements to aid specialty helical pile contractor and pile design professional in making appropriate materials selections. The size and number of helical bearing plates must be such that the Steel helical piles achieve the appropriate torque and capacity in the soils at the site within the minimum and maximum length requirements. Failure to achieve proper torque and capacity shall result in Contractor replacing Steel helical piles as appropriate to support the required loads. All material replacements and helical pile relocations shall be acceptable to Engineer.
- B. The design strength of the helical bearing plates, shaft connections, Brackets, and the pile shaft itself shall be sufficient to support the design loads specified on the Drawings times appropriate service load factors. In addition, all Steel helical piles shall be manufactured to the following criteria:
 - 1. Central Shaft: The central shaft shall consist of a high strength structural steel tube meeting the requirements of ASTM A450.
 - 2. Helical Bearing Plates: One or more helical bearing plates shall be affixed to the central shaft. Helical bearing plates shall be attached to central shafts via fillet welds continuous on top and bottom and around the leading edges. Helical bearing plates shall be cold pressed into a near perfect helical shape that when affixed to the central shaft are perpendicular with the central shaft, of uniform pitch, and such that the leading and trailing edges are within 3/8 inch of parallel. Average helical pitch shall be within plus or minus 1/4 inch of the thickness of the helical bearing plate plus 3 inches.
 - 3. Corrosion Protection: Hot-dip galvanized ASTM A153.
 - 4. Shaft Connections: The Steel helical pile shaft connections shall consist of an external sleeve connection or a welded connection. External sleeve connections shall be in-line, straight and rigid and shall have a maximum tolerable slack of 1/16-inch. Welded connections shall consist of a full penetration groove weld all-around the central shaft. Shaft connections shall have a flexural strength at least as great as the shaft itself.
 - 5. Bolts: Bolt holes through the external sleeve and central shaft shall have a diameter that is 1/16th inch greater than the bolt diameter. Bolts and nuts used to join Steel helical pile sections at the shaft connections shall be bare steel, epoxy coated, or zinc coated to match the corrosion protection used for the central shaft. All Steel helical pile bolts shall be securely snug tightened.
 - 6. Plug Welds: Alternatively, external sleeve connections may be made using plug welds matching the diameter and number of bolt holes.
 - 7. External sleeve: External sleeve Steel helical pile shaft connections shall consist of a high strength structural steel tube outer sleeve meeting the requirements of ASTM A450. The outer sleeve shall be welded to the central shaft via a continuous fillet weld all-around. The fillet weld shall have a throat thickness equal to the external sleeve tube thickness.
- C. Steel helical piles shall be fitted with a manufactured Bracket that facilitates connection to the structure. Brackets shall be rated for the design loads shown on the Drawings. Brackets shall

be affixed to the end of Steel helical piles via bolts, plug welds, or continuous penetration welds meeting the requirements for shaft connections given previously in these specifications.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Site Conditions: Do not start steel helical pile installation operations until earthwork fills have been completed or excavations have reached an elevation of 6 to 12 inches above bottom of footing, grade beam, or pile cap.

3.2 INSTALLATION EQUIPMENT

- A. Torque Motor: Steel helical piles should be installed with high torque, low RPM torque motors, which allow the helical plates to advance with least possible soil disturbance. The torque motor shall be hydraulic power driven with clockwise and counter-clockwise rotation capability. The torque motor shall be adjustable with respect to revolutions per minute during installation. Percussion drilling equipment shall not be permitted. The torque motor shall have torque capacity equal to or greater than the minimum final installation torque required for the project. The connection between the torque motor and the installation rig shall have no more than two pivot hinges oriented 90 degrees from each other. Additional hinges promote wobbling and affect lateral capacity.
- B. Installation Equipment: The installation equipment shall be capable of applying adequate crowd and torque simultaneously to ensure normal advancement of the Steel helical piles. The equipment shall be capable of maintaining proper alignment and position.
- C. Drive Tool: The connection between the torque motor and Steel helical pile shall be in-line, straight, and rigid, and shall consist of a hexagonal, square, or round kelly bar adapter and helical shaft socket. To ensure proper fit, the drive tool shall be manufactured by the Steel helical pile manufacturer and used in accordance with the manufacturer's installation instructions.
- D. Connection Pins: The central shaft of the Steel helical pile shall be attached to the drive tool by ASME SAE Grade 8 smooth tapered pins matching the number and diameter of the specified shaft connection bolts. The connection pins should be maintained in good condition and safe to operate at all times. The pins should be regularly inspected for wear and deformation. Pins should be replaced with identical pins when worn or damaged.
- E. Torque Indicator: A torque indicator shall be used to measure installation torque during installation. The torque indicator can be an integral part of the installation equipment or externally mounted in-line with the installation tooling. The torque indicator shall be capable of torque measurements with a sensitivity of 500 ft-lb or less. Torque indicators shall have been calibrated within 1-year prior to start of Work. Torque indicators that are an integral part of the installation equipment shall be calibrated on-site. Torque indicators that are mounted in-line with the installation tooling shall be calibrated either on-site or at an appropriately

equipped test facility. Indicators that measure torque as a function of hydraulic pressure shall be re-calibrated following any maintenance performed on the torque motor. Torque indicators shall be re-calibrated if, in the opinion of the Engineer, reasonable doubt exists as to the accuracy of the torque measurements.

3.3 INSTALLATION PROCEDURES

- A. The ratio of design load to the total area of the helical bearing plates shall not exceed the Allowable Bearing Capacity.
- B. Connect the lead section to the Torque Motor using the Drive Tool and Connection Pins. Position and align the Lead Section at the location and to the inclination shown on the Drawings and crowd the pilot point into the soil. Advance the Lead Section and continue to add Extension Sections to achieve the Termination Criteria. All sections shall be advanced into the soil in a smooth, continuous manner at a rate of rotation between 10 and 40 revolutions per minute. Snug tight all coupling bolts.
- C. Constant axial force (crowd) shall be applied while rotating Steel helical piles into the ground. The crowd applied shall be sufficient to ensure that the Steel helical pile advances into the ground a distance equal to at least 80% of the blade pitch per revolution during normal advancement.
- D. The manufacturer's torsional strength rating of the Steel helical pile shall not be exceeded during installation.
- E. Bolt hole elongation due to torsion of the shaft of a Helical Anchor at the drive tool shall be limited to ¼ inch. Helical Anchors with bolt hole damage exceeding this criterion shall be uninstalled, removed, and discarded.
- F. When the Termination Criteria of a Steel helical pile is obtained, the specialty helical pile contractor shall adjust the elevation of the top end of the shaft to the elevation shown on the Drawings. This adjustment may consist of cutting off the top of the shaft and drilling new holes to facilitate installation of Brackets. Alternatively, installation may continue until the final elevation and orientation of the pre-drilled bolt holes are in alignment. Specialty helical pile contractor shall not reverse the direction of torque and back-out the Steel helical pile to obtain the final elevation.
- G. The specialty helical pile contractor shall install Brackets in accordance with steel helical pile manufacturer's details and as required by pile design professional.
- H. All steel helical pile components including the shaft and Bracket shall be isolated from making a direct electrical contact with any concrete reinforcing bars or other non-galvanized metal objects since these contacts may alter corrosion rates.

3.4 TERMINATION CRITERIA

A. Steel helical piles shall be advanced until all of the following criteria are satisfied.

- 1. Axial capacity is verified by achieving the final installation torque as provided by the Pile Design Professional.
- 2. Helical Piles shall be advanced until the average torque over the last three (3) feet equals or exceeds the required final installation torque.
- B. If the torsional strength rating of the Steel helical pile and/or the maximum torque of the installation equipment has been reached prior to achieving the minimum depth required by the specialty helical pile contractor's Pile Design Professional, the specialty helical pile contractor and their Pile Design Professional shall have the following options for selecting the appropriate option in meeting the service level load requirements:
 - 1. Remove the Steel helical pile and install a new one with fewer and/or smaller diameter helical bearing plates or with dual cutting edge helical bearing plates. The new helical configuration shall be subject to review and acceptance of the Engineer and Owner.
 - 2. Remove the Steel helical pile and pre-drill a 4-inch diameter pilot hole in the same location and reinstall the anchor/pile.
 - 3. If the obstruction is shallow, remove the Steel helical pile and remove the obstruction by surface excavation. Backfill and compact the resulting excavation and reinstall the anchor/pile.
 - 4. Remove the Steel helical pile and relocate 1-foot to either side of the installation location subject to the review and acceptance of Engineer and Owner.
 - 5. Reverse the direction of torque, back-out the Steel helical pile a distance of 1 to 2 feet and attempt to reinstall by decreasing crowd and penetrating the obstruction.

3.5 ALLOWABLE TOLERANCES

- A. Steel helical piles shall be installed as close to the specified installation and orientation angles as possible. Tolerance for departure from installation and orientation angles shall be +/- 5 degrees.
- B. Steel helical piles and Bracket Assemblies shall be installed at the locations and to the elevations shown on the Plans. Tolerances for Bracket Assembly placement shall be +/- 1 inch in both directions perpendicular to the shaft and +/- 1/4 inch in a direction parallel with the shaft unless otherwise specified.

3.6 FIELD QUALITY CONTROL

- A. Special Inspections: The Contractor shall engage a qualified special inspector to perform the following special inspections and testing:
 - 1. Pile foundations.
 - 2. The special inspector shall observe and document at least 100 percent of Steel helical pile installations.

- B. The Contractor and specialty helical pile contractor shall provide the Engineer and Owner copies of installation records within 48 hours after each installation is completed. These installation records shall include, but are not limited to, the following information:
 - 1. Name of project, Contractor and specialty helical pile contractor.
 - 2. Name of specialty helical pile contractor's supervisor during installation.
 - 3. Date and time of installation.
 - 4. Name and model of installation equipment.
 - 5. Type of torque indicator used.
 - 6. Location of Steel helical pile by grid location, diagram, or assigned identification number.
 - 7. Type and configuration of Lead Section with length of shaft and number and size of helical bearing plates.
 - 8. Type and configuration of Extension Sections with length and number and size of helical bearing plates, if any.
 - 9. Installation duration and observations.
 - 10. Total length installed.
 - 11. Final elevation of top of shaft and cut-off length, if any.
 - 12. Final plumbness or inclination of shaft.
 - 13. Installation torque at minimum three-foot depth intervals.
 - 14. Final installation torque.
 - 15. Comments pertaining to interruptions, obstructions, or other relevant information.
 - 16. Verified axial load capacity.
 - 17. Weather conditions.
 - 18. Obstructions encountered, depths and delay time.
 - a. Delay in time due to obstructions will be addressed per changes in contract.
 - b. Contractor shall notify Owner and Engineer immediately upon discovery of an obstruction.
 - 19. Verification of submittal for installation torque to pier capacity and corrosion protection.
- C. Load Testing:
 - 1. Compression Tests:
 - a. Contractor shall perform one compression proof test for following minimum service level capacities:
 - 1) 30 kips.
 - b. Compression tests shall be performed following the "Procedure A- Quick Test" described in ASTM D1143 specifications.
 - c. Load tests shall be observed and documented by the special inspector.
 - d. The maximum test load shall be 200% of the allowable load shown on the Drawings.

- e. The locations of Steel helical piles to be tested shall be determined by the specialty helical pile contractor.
- f. Installation methods, procedures, equipment, products, and final installation torque shall be identical to the production steel helical piles to the extent practical except where otherwise approved by the Pile Design Professional.
- g. A load test shall be deemed acceptable provided the maximum test load is applied without Steel helical pile failure and the deflection of the pile head at the design load is less than 1/2-inch. Failure is defined when continuous jacking is required to maintain the load.
- 2. Tension Tests:
 - a. Contractor shall perform one tension proof test:
 - 1) 5 kips.
 - b. Proof load tests shall be performed following the procedure "Procedure A- Quick Test" in ASTM D3689 specifications.
 - c. Proof load tests shall be observed and documented by the special inspector.
 - d. Unless otherwise shown on the Drawings, the maximum test load shall be 150% of the allowable load shown on the Drawings.
 - e. The locations of Helical Piles to be tested shall be determined by the Contractor.
 - f. Installation methods, procedures, equipment, products, and final installation torque shall be identical to the production steel helical piles to the extent practical except where otherwise approved by the Pile Design Professional.
 - g. A proof load test shall be deemed acceptable provided the maximum test load is applied without helical pile failure. Failure is when continuous jacking is required to maintain the load.
- 3. If a load test fails the forgoing acceptance criteria, the specialty helical pile contractor shall modify the steel helical pile design and/or installation methods and retest the modified pile, as directed by the Owner or Engineer. These modifications include, but are not limited to, de-rating the load capacity, modifying the installation methods and equipment, increasing the minimum final installation torque, changing the helical configuration, or changing the product. Modifications that require changes to the structure shall have prior review and acceptance of the Owner. Any modifications of design or construction procedures, and any retesting required shall be at the Contractor's expense.
- 4. The Contractor shall provide the Owner and Engineer copies of load test reports confirming configuration and construction details within 1 week after completion of the load tests. This written documentation will either confirm the load capacity as required on the working drawings or propose changes based upon the results of the tests. At a minimum, the documentation shall include:
 - a. Name of project, Contractor and specialty helical pile contractor.
 - b. Date, time, and duration of test.
 - c. Location of test Steel helical pile by grid location, diagram, or assigned identification number.

- d. Test procedure (ASTM D1143, D3689, or D3966).
- e. List of any deviations from procedure.
- f. Description of calibrated testing equipment and test set-up.
- g. Type and configuration of steel helical pile including lead section, number and type of extension sections, and manufacturer's product identification numbers.
- h. Load steps and duration of each load increment.
- i. Cumulative pile-head movement at each load step.
- j. Comments pertaining to test procedure, equipment adjustments, or other relevant information.

END OF SECTION 316216

THIS PAGE LEFT BLANK INTENTIONALLY